
Lecture 12: MPI Point-to-Point 2
CMSE 822: Parallel Computing
Prof. Sean M. Couch

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

PCA Questions
Bucket Brigade

• Yes! Essentially this is a serial operation.

• MPI used because overall calculation is parallel.

• Likely, there are better ways to do this with other MPI routines…

2

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

PCA Questions
• “synchronous”: processes are

coordinated

• “blocking”: no use of system buffer

3

4.4. More about point-to-point communication

Figure 4.14: Blocking and synchronicity

4.4.4 Persistent communication

An MPI_Isend or MPI_Irecv call has an MPI_Request parameter. This is an object that gets created in the
send/recv call, and deleted in the wait call. You can imagine that this carries some overhead, and if the same
communication is repeated many times you may want to avoid this overhead by reusing the request object.

To do this, MPI has persistent communication:
• You describe the communication with MPI_Send_init, which has the same calling sequence as
MPI_Isend, or MPI_Recv_init, which has the same calling sequence as MPI_Irecv.

• The actual communication is performed by calling MPI_Start, for a single request, or MPI_Startall
for an array or requests.

• Completion of the communication is confirmed with MPI_Wait or similar routines as you have
seen in the explanation of non-blocking communication.

• The wait call does not release the request object: that is done with MPI_Request_free.
The calls MPI_Send_init (figure 4.26) and MPI_Recv_init (figure 4.27) for creating a persistent commu-
nication have the same syntax as those for non-blocking sends and receives. The difference is that they do
not start an actual communication, they only create the request object.

Given these request object, a communication (both send and receive) is then started with MPI_Start (fig-
ure 4.28) for a single request or MPI_Startall (figure 4.29) for multiple requests, given in an array.

These are equivalent to starting an MPI_Isend or MPI_Isend; correspondingly, it is necessary to issue an
MPI_Wait... call (section 4.3.1) to determine their completion.

After a request object has been used, possibly multiple times, it can be freed; see 4.3.3.3.

In the following example a ping-pong is implemented with persistent communication.

Victor Eijkhout 151

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Blocking vs. Non-blocking

4

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Blocking vs. Non-blocking

5

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Asynchronous vs. Synchronous

6

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

PCA Questions

• send and recv posted at same time and either can be completed first.

• blocks until both finished

7

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

PCA Questions

• Affinity: rank 0 and 1 may be on the same socket!

8

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

PCA Questions
Load balancing

• Yes! Load balancing is always tricky. Complex cases might involve cases
where “work-per-data” is not uniform, too…

9

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

PCA Questions

10

4. MPI topic: Point-to-point

Remark 5 The structure of the send call shows the symmetric nature of MPI: every target process is
reached with the same send call, no matter whether it’s running on the same multicore chip as the sender,
or on a computational node halfway across the machine room, taking several network hops to reach. Of
course, any self-respecting MPI implementation optimizes for the case where sender and receiver have ac-
cess to the same shared memory. However, even then, there will be a copy operation from the sender buffer
to the receiver buffer, so there is no actual memory sharing going on.

Next, a message can have a tag . Many applications have each sender send only one message to a given
receiver. For the case where there are multiple simultaneous messages between the same sender / receiver
pair, the tag can be used to disambiguate between the messages.

Unless otherwise needed, a tag value of zero is safe to use. Indeed, OO interfaces to MPI typically have
this as an optional parameter with value zero. If you do use tag values, you can use the key MPI_TAG_UB to
query what the maximum value is that can be used; see section 12.1.2.

MPL note. MPL uses a default value for the tag, and it can deduce the type of the buffer. Sending a scalar
becomes:
// sendscalar.cxx
if (comm_world.rank()==0) {

double pi=3.14;
comm_world.send(pi, 1); // send to rank 1
cout << "sent: " << pi << ’\n’;

} else if (comm_world.rank()==1) {
double pi=0;
comm_world.recv(pi, 0); // receive from rank 0
cout << "got : " << pi << ’\n’;

}

For the source of this example, see section 4.6.3

Sending a buffer uses a general mechanism that will be discussed later:
// sendbuffer.cxx
std::vector<double> v(8);
mpl::contiguous_layout<double> v_layout(v.size());

comm_world.send(v.data(), v_layout, 1); // send to rank 1
comm_world.recv(v.data(), v_layout, 0); // receive from rank 0

For the source of this example, see section 4.6.4

4.2.1.2 Receive call

The basic blocking receive command is MPI_Recv (figure 4.2)

An example:
double recv_data;
MPI_Recv

(/* recv buffer/count/type: */ &recv_data,1,MPI_DOUBLE,
/* from: */ sender, /* tag: */ 0,
/* communicator: */ comm,
/* recv status: */ MPI_STATUS_IGNORE);

116 Parallel Computing – r428

4.2. Blocking point-to-point operations

Figure 4.5: Illustration of an ideal (left) and actual (right) send-receive interaction

other = 1-mytid; /* if I am 0, other is 1; and vice versa */
receive(source=other);
send(target=other);

Imagine that the two processes execute this code. They both issue the send call. . . and then can’t go on,
because they are both waiting for the other to issue the send call corresponding to their receive call. This is
known as deadlock .

4.2.2.2 Eager limit

If you reverse the send and receive call, you should get deadlock, but in practice that code will often work.
The reason is that MPI implementations sometimes send small messages regardless of whether the receive
has been posted. This relies on the availability of some amount of available buffer space. The size under
which this behaviour is used is sometimes referred to as the eager limit.)

The following code is guaranteed to block, since a MPI_Recv always blocks:
// recvblock.c
other = 1-procno;
MPI_Recv(&recvbuf,1,MPI_INT,other,0,comm,&status);
MPI_Send(&sendbuf,1,MPI_INT,other,0,comm);
printf("This statement will not be reached on %d\n",procno);

For the source of this example, see section 4.6.5

On the other hand, if we put the send call before the receive, code may not block for small messages that
fall under the eager limit.

To illustrate eager and blocking behavior in MPI_Send, consider an example where we send gradually larger
messages. From the screen output you can see what the largest message was that fell under the eager limit;
after that the code hangs because of a deadlock.

// sendblock.c
other = 1-procno;
/* loop over increasingly large messages */
for (int size=1; size<2000000000; size*=10) {
sendbuf = (int*) malloc(size*sizeof(int));
recvbuf = (int*) malloc(size*sizeof(int));
if (!sendbuf || !recvbuf) {

Victor Eijkhout 119

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

PCA Questions
Eager limit

11

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

PCA Questions
MPI Persistent

• Better performance? Not
necessarily…

• More advantage for
collectives

• Less overheads

• Repeated communication
in inner loop

12

4. MPI topic: Point-to-point

4.26 MPI_Send_init
C:
int MPI_Send_init(

const void* buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request *request)

Fortran:
MPI_Send_init(buf, count, datatype, dest, tag, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
MPI.Comm.Send_init(self, buf, int dest, int tag=0)

Semantics:
IN buf: initial address of send buffer (choice)
IN count: number of elements sent (non-negative integer)
IN datatype: type of each element (handle)
IN dest: rank of destination (integer)
IN tag: message tag (integer)
IN comm: communicator (handle)
OUT request: communication request (handle)

// persist.c
if (procno==src) {

MPI_Send_init(send,s,MPI_DOUBLE,tgt,0,comm,requests+0);
MPI_Recv_init(recv,s,MPI_DOUBLE,tgt,0,comm,requests+1);
printf("Size %d\n",s);
t[cnt] = MPI_Wtime();
for (int n=0; n<NEXPERIMENTS; n++) {

fill_buffer(send,s,n);
MPI_Startall(2,requests);
MPI_Waitall(2,requests,MPI_STATUSES_IGNORE);
int r = chck_buffer(send,s,n);
if (!r) printf("buffer problem %d\n",s);

}
t[cnt] = MPI_Wtime()-t[cnt];
MPI_Request_free(requests+0); MPI_Request_free(requests+1);

} else if (procno==tgt) {
for (int n=0; n<NEXPERIMENTS; n++) {

MPI_Recv(recv,s,MPI_DOUBLE,src,0,comm,MPI_STATUS_IGNORE);
MPI_Send(recv,s,MPI_DOUBLE,src,0,comm);

}
}

For the source of this example, see section 4.6.24

persist.py
sendbuf = np.ones(size,dtype=np.int)

152 Parallel Computing – r428

