Lecture 12: MPIPoint-to-Point 2

CMSE 822: Parallel C

Prof. Sean M. Couch

PCA Questions

Bucket Brigade

m Stephen White 3:42 pMm

@y PCA10: For serial operations such as the bucket brigade problem described,
what advantage is there in "parallelizing” this code, doesn't this just take an
already O(n) runtime problem and then add O(n) communication on
top?

& ©

T .
“6 5 days ago

* Yes! Essentially this is a serial operation.
 MPI| used because overall calculation is parallel.

» Likely, there are better ways to do this with other MPI routines...

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 2 © S.M. Couch

PCA Questions Ny |

I []
T . .
¢ ES)/F]C)?]F()f]()LJES . F)F()()EBESESEBES ale blocking synchronous send, nonblocking synchronous send,
blocking receive nonblocking receive

coordinated

[1

* “blocking”: no use of system buffer ; -K

nonblocking asynchronous

blocking asynchronous send cend

Figure 4.14: Blocking and synchronicity

’q Luke Wiseman 3:51 PM
i‘@__L PCA11: Could you go over the 4 cases shown in figure 4.14 where it is

talking about the differences between blocking and nonblocking combined

with synchronous and asyncronous communication?
&

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 3 © S.M. Couch

Blocking vs. Non-blocking

e Blocking:

o A blocking send routine will only "return” after it is safe to modify the application buffer (your send data) for
reuse. Safe means that modifications will not affect the data intended for the receive task. Safe does not
imply that the data was actually received - it may very well be sitting in a system buffer.

o ADblocking send can be synchronous which means there is handshaking occurring with the receive task to
confirm a safe send.

o Ablocking send can be asynchronous if a system buffer is used to hold the data for eventual delivery to the
receive.

o A blocking receive only "returns” after the data has arrived and is ready for use by the program.

e Non-blocking:

o Non-blocking send and receive routines behave similarly - they will return almost immediately. They do not
wait for any communication events to complete, such as message copying from user memory to system
buffer space or the actual arrival of message.

o Non-blocking operations simply "request” the MPI library to perform the operation when it is able. The user
can not predict when that will happen.

o |tis unsafe to modify the application buffer (your variable space) until you know for a fact the requested
non-blocking operation was actually performed by the library. There are "wait" routines used to do this.

o Non-blocking communications are primarily used to overlap computation with communication and exploit
possible performance gains.

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 4 © S.M. Couch

Blocking vs. Non-blocking

e System buffer space is:

o Opaque to the programmer and managed entirely by the MPI library
A finite resource that can be easy to exhaust
Often mysterious and not well documented
Able to exist on the sending side, the receiving side, or both

Something that may improve program performance because it allows send - receive operations to be

o O O O

asynchronous.

CMSE 822 - Parallel Computing

http://cmse.msu.edu/cmse822

Processor 1

process A process B

application SEND network application RECV

system buffer system buffer

Path of a message buffered at the receiving process

© S.M. Couch

Asynchronous vs. Synchronous

MPI Send

Basic blocking send operation. Routine returns only after the application buffer in the sending task is free for
reuse. Note that this routine may be implemented differently on different systems. The MPI standard permits the
use of a system buffer but does not require it. Some implementations may actually use a synchronous send
(discussed below) to implement the basic blocking send.

MPI Send (&buf,count,datatype,dest,tag,comnm)
MPI_SEND (buf,count,datatype,dest,tag,comm, ierr)

MPI Ssend

Synchronous blocking send: Send a message and block until the application buffer in the sending task is free for
reuse and the destination process has started to receive the message.

MPI Ssend (&buf,count,datatype,dest,tag,comm)
MPI SSEND (buf,count,datatype,dest,tag,comm,ierr)

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 6 © S.M. Couch

Matthew Zeilbeck 7:33 pm
., PCA10: Who sends first in an MPI_sendrecv ? Similarly, if all processes need

PCA Questions

to send and receive when it is called, how does MPI avoid deadlock? For
example, if the sendrecv causes all processes to send first, then receive, and
If it's blocking, then it looks like we have a problem.

&1l @

MPI Sendrecv

Send a message and post a receive before blocking. Will block until the sending application buffer is free for
reuse and until the receiving application buffer contains the received message.

MPI_ Sendrecv (&sendbuf, sendcount,sendtype,dest,sendtag,
&recvbuf,recvcount,recvtype, source, recvtag,
comm, &status)

MPI_SENDRECV (sendbuf,sendcount,sendtype,dest,sendtag,
recvbuf, recvcount, recvtype, source,recvtag,
comm,status, ierr)

 send and recv posted at same time and either can be completed first.

 blocks until both finished

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 7 © S.M. Couch

PCA Questions

Brian Nevins 6:30 PM
PCA11: Why don't you want to use processes O and 1 for a ping-pong
timing? I'm not seeing anything in the text about it, and I'm having trouble

MPI COMM_ WORLD CLUSTER
nodeOl

CPUO

CPU 1
node02

CPUO

seeing why those would be problematic if the timing is the sole purpose of

the program

s N1 @

node03

CPU O

node04

CPUO

o Affinity: rank O and 1 may be on the same socket!

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 8 © S.M. Couch

PCA Questions

Load balancing

« Nathan Haut 1:01 PM

§ PCA10: On page 112 in the book it describes a situation where the number
of items can't be evenly divided among the number of processors so it adds
the excess to the last processor. Wouldn't this be a really poor way of
dealing with the excess since in the worst case scenario it could nearly
double the amount of data added to the last processor. Wouldn't it be

better to go through and add one additional item to each processor until all

items are given to processors, so rather than the worst case being nearly
doubling the data on a single processor the worst case would be one extra
item on almost all processors?

* Yes! Load balancing is always tricky. Complex cases might involve cases
where “work-per-data” is not uniform, too...

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 9 © S.M. Couch

PCA Questions

Q 3\‘ Tamas Budner 9:39 pm

* W™ PCA10: What does the remark on page 116 mean when it says "every
target process is reached with the same send call.." How does reversing
send and receive calls prevent deadlock (p. 118)?

&1 ©

Remark S The structure of the send call shows the symmetric nature of MPI: every target process 1s
reached with the same send call, no matter whether it’s running on the same multicore chip as the sender,
or on a computational node halfway across the machine room, taking several network hops to reach. Of
course, any self-respecting MPI implementation optimizes for the case where sender and receiver have ac-

cess to the same shared memory. However, even then, there will be a copy operation from the sender buffer
to the receiver buffer, so there is no actual memory sharing going on.

The following code 1s guaranteed to block, since a MPI_Recv always blocks:

// recvblock.c

other = l1l—-procno;

MPI Recv (&recvbuf,l,MPI INT, other,0, comm, &status) ;

MPI Send(&sendbuf,1l,MPI INT, other, (0, comm) ;

printf("This statement will not be reached on %d\n", procno);

For the source of this example, see section 4.6.5
On the other hand, if we put the send call before the receive, code may not block for small messages that

fall under the eager limit.

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 10 © S.M. Couch

@ Daniel Jacob Griffin 8:25 AM
. PCA10: Can you comment more on eager limits? I'm not sure | understand

PCA Questions et

Eager limit & &

MP1_Send Application MP1_Recv Sender
Process
Application BefMer Application Bufler
Regstr Send
gl E Bufler
[. -
Library Registered MPI L’b‘ary Library Regitered
§ Buffer Buffer § s et
\ « 10 HCA
o -
<" S
X .
%' B\ 3. Copy over Notwork "Qf é}
High Performance Network
(a) Eager Protocol (b) Rendezvous Protocol

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 11 © S.M. Couch

PCA Questions

MPI Persistent

* Better performance”? Not
necessarily...

 More advantage for
collectives

e | ess overheads

 Repeated communication
IN Inner loop

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822

// persist.c
1f (procno==src) {
MPI Send init (send, s,MPI_DOURLE, tgt, 0, comm, requests+0) ;
MPI Recv_1init (recv, s,MPI_DOURLE, tgt, 0, comm, requests+l);
printf("Size %d\n", s);
t{cnt] = MPI Wtime () ;
for (int n=0; nN<KNEXPERIMENTS; n++) {
fill buffer(send, s, n) ;
MPI Startall (2, requests);
MPI Waitall (2, requests,MPI_STATUSES_IGNORE) ;
int r = chck _buffer(send, s, n);
if (!r) printf("buffer problem %d\n", s);
}
tlcnt] = MPI Wtime () —-t[cnt];
MPI Request_free (requests+0); MPI_Request_free (requests+l);
} else 1f (procno==tgt) {
for (int n=0; nN<KNEXPERIMENTS; n++) {
MPI Recv (recv, s,MPI DOUBRLE, src, 0, comm,MPI STATUS IGNORE) ;
MPI Send(recv, s,MPI DOUBLE, src, 0, comm) ;

12 © S.M. Couch

