Lecture 15:"Worksharing, data

directives in OpenMP

CMSE 822: Parallel C
Prof. Sean M. Couch

VOTE!

* michigan.gov/vote

e https://www.betterknowaballot.com

* Drop off ballot at clerk’s office!

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 2 © S.M. Couch

http://michigan.gov/vote
https://www.betterknowaballot.com

G MICHIGAN STATE UNIVERSITY
Counseling & Psychiatric Services
Student Health & Wellness

Welcome In Crisis? General Info Services Family/Friends Faculty/Staff Referrals Training
caps.msu.edu g

Search...

0

B 3
¢
.

Black Lives Matter

We care about our students and the

issues that impact their safety and
health. Learn more.

All CAPS services are now virtual.

C Click here to get started)

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 3

© S.M. Couch

http://caps.msu.edu

._74 ..

1 1 e

-

MSE

OpenMP Loops, Worksharing, Reductions

see https://computing.linl.gov/tutorials/openMP

822 - Parallel Computing http://cmse.msu.edu/cmse822

© S.M. Couch

Work-sharing Constructs

* A work-sharing construct divides the execution of the enclosed code region
among the members of the team that encounter it.

* Work-sharing constructs do not launch new threads

* There is no implied barrier upon entry to a work-sharing construct, however
there is an implied barrier at the end of a work sharing construct.

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 6

© S.M. Couch

B Types of Work-Sharing Constructs:

NOTE: The Fortran workshare construct is not shown here.

DO / for - shares iterations of a SECTIONS - breaks work into SINGLE - serializes a section of
loop across the team. Represents a separate, discrete sections. Each code
type of "data parallelism". section is executed by a thread.

Can be used to implement a type of
"functional parallelism".

master thread master thread master thread

v
l
v
i
|
v v v v

feam team
JOIN
master thread master thread master thread
v v v

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 7 © S.M. Couch

Work-sharing Constructs

- Restrictions:

e A work-sharing construct must be enclosed dynamically within a parallel region in order for the directive to
execute in parallel.

e Work-sharing constructs must be encountered by all members of a team or none at all

e Successive work-sharing constructs must be encountered in the same order by all members of a team

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 8

© S.M. Couch

DO / for Directive
B Purpose:

[
Work-sharin
e The DO / for directive specifies that the iterations of the loop immediately following it must be executed in parallel

by the team. This assumes a parallel region has already been initiated, otherwise it executes in serial on a single
processor.

B Format:

!SOMP DO [clause ...]
SCHEDULE (type [,chunk])
ORDERED
PRIVATE (list)
FIRSTPRIVATE (list)
LASTPRIVATE (list)
SHARED (list)
REDUCTION (operator : list)
COLLAPSE (n)

Fortran

do_loop

1SOMP END DO [NOWAIT]

¥pragma omp for [clause ...] newline
schedule (type [,chunk])
ordered
private (list)
firstprivate (list)
lastprivate (list)

C/C++ shared (list)

reduction (operator: list)

collapse (n)

nowait

for loop

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 9 © S.M. Couch

§\| -
r i

Work-sharing

B Clauses:

e SCHEDULE: Describes how iterations of the loop are divided among the threads in the team. The default
schedule is implementation dependent. For a discussion on how one type of scheduling may be more optimal
than others, see http://openmp.org/forum/viewtopic.php?f=3&t=83.

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 10 © S.M. Couch

STATIC
Loop iterations are divided into pieces of size chunk and then statically assigned to threads. If chunk is not specified, the

iterations are evenly (if possible) divided contiguously among the threads.

STATIC

DYNAMIC
Loop iterations are divided into pieces of size chunk, and dynamically scheduled among the threads; when a thread

finishes one chunk, it is dynamically assigned another. The default chunk size is 1.

DYNAMIC

3
3

GUIDED
lterations are dynamically assigned to threads in blocks as threads request them until no blocks remain to be assigned.

Similar to DYNAMIC except that the block size decreases each time a parcel of work is given to a thread.
The size of the initial block is proportional to: number of_ iterations / number_ of threads
Subsequent blocks are proportional to number of iterations remaining / number of threads

The chunk parameter defines the minimum block size. The default chunk size is 1.
Note: compilers differ in how GUIDED is implemented as shown in the "Guided A" and "Guided B" examples below.

GUIDED A

3
3
o

GUIDED B

T n mewsmee v S 0

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 11 © S.M. Couch

Work-sharing

B Clauses:

NO WAIT / nowait: If specified, then threads do not synchronize at the end of the parallel loap.
ORDERED: Specifies that the iterations of the loop must be executed as they would be in a serial program.

COLLAPSE: Specifies how many loops in a nested loop should be collapsed into one large iteration space and
divided according to the schedule clause. The order of the iterations in the collapsed iteration space is
determined as though they were executed sequentially. May improve performance.

Other clauses are described in detail later, in the Data Scope Atiribute Clauses section.

B Restrictions:

The DO loop can not be a DO WHILE loop, or a loop without [oop control. Also, the loop iteration variable must
be an integer and the loop control parameters must be the same for all threads.

Program correctness must not depend upon which thread executes a particular iteration.
It is illegal to branch (goto) out of a loop associated with a DO/for directive.

The chunk size must be specified as a loop invariant integer expression, as there is no synchronization during its
evaluation by different threads.

ORDERED, COLLAPSE and SCHEDULE clauses may appear once each.

See the OpenMP specification document for additional restrictions.

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 12

© S.M. Couch

Example: DO / for Directive

¢ Simple vector-add program
o Arrays A, B, C, and variable N will be shared by all threads.
o Variable | will be private to each thread; each thread will have its own unique copy.
o The iterations of the loop will be distributed dynamically in CHUNK sized pieces.
o Threads will not synchronize upon completing their individual pieces of wark (NOWAIT).

#include <omp.h>
#define N 1000
define CHUNKSIZE 100

main(int argc, char *argv[]) {

int i, chunk;
float a[N], b[N], c[N];

for (i=0; i < N; i++)
a[i] = b[i] =1 * 1.0;
chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c¢,chunk) private(i)
{

#pragma omp for schedule(dynamic,chunk) nowait
for (i=0; i < N; i++)
c[i] = a[i] + b[i];

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 13 © S.M. Couch

|SOMP SECTIONS [clause ...]

|
Sections
FIRSTPRIVATE (list)

b p . LASTPRIVATE (list)
bttt REDUCTION (operator [intrinsic : list)

e The SECTIONS directive is a non-iterative work-sharing construct. It specifies that the

enclosed section(s) of code are to be divided among the threads in the team. ISOMF SECTION

Fortran
e Independent SECTION directives are nested within a SECTIONS directive. Each SECTION block
is executed once by a thread in the team. Different sections may be executed by different
threads. It is possible for a thread to execute more than one section if it is quick enough and ISOMP SECTION

the implementation permits such.
block
B Clauses: oc

e There is an implied barrier at the end of a SECTIONS directive, unless the NOWAIT/nowait |SOMP END SECTIONS [NOWAIT]

clause is used.

B Restrictions: #pragma omp sections [clause ...] newline
private (list)
e ltis illegal to branch (goto) into or out of section blocks. firstprivate (list)
lastprivate (list)
o SECTION directives must occur within the lexical extent of an enclosing SECTIONS directive reduction (operator: list)
(no orphan SECTIONS). nowait
{

C/C++ #pragma omp section newline
structured block
#pragma omp section newline

structured block

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 14 © S.M. Couch

#include <omp.h>
#define N 1000

Sections nain(int arge, char *argvll) |

int 1i;
float a[N], b[N], c[N], d[N];

for (i=0; i < N; i++) {

a[i] = i * 1.5;
b[i] = i + 22.35;
}

#pragma omp parallel shared(a,b,c,d) private(1i)

{

#pragma omp sections nowait

{

#pragma omp section
for (i=0; i < N; i++)
c[i] = a[i] + b[i];

#pragma omp section
for (i=0; i < N; i++)
d[i] = a[i] * b[i];

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 15 © S.M. Couch

Single
B Purpose:

e The SINGLE directive specifies that the enclosed code is to be executed by only one thread in the team.

e May be useful when dealing with sections of code that are not thread safe (such as 1/O)

B Format:

ISOMP SINGLE [clause ...]

PRIVATE (list)
FIRSTPRIVATE (list)
Fortran block

ISOMP END SINGLE [NOWAIT]

#pragma omp single [clause ...] newline
private (list)
firstprivate (list)

C/C++ nowait
structured block

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 16 © S.M. Couch

¢ Also called Data-sharing Attribute Clauses

e An important consideration for OpenMP programming is the understanding and use of data scoping

¢ Because OpenMP is based upon the shared memory programming model, most variables are shared by default

e Global variables include:

o Fortran: COMMON blocks, SAVE variables, MODULE variables

o C: File scope variables, static

¢ Private variables include:
o Loop index variables

o Stack variables in subroutines called from parallel regions
o Fortran: Automatic variables within a statement block

e The OpenMP Data Scope Attribute Clauses are used to explicitly define how variables should be scoped. They

Include:

o PRIVATE
FIRSTPRIVATE
LASTPRIVATE
SHARED
DEFAULT
REDUCTION
COPYIN

CMSE 822 - Parallel Computing

O O 0O 0O O O

http://cmse.msu.edu/cmse822

Data Scope Attribute Clauses

17

© S.M. Couch

Data Scope Attribute Clauses

e Data Scope Attribute Clauses are used in conjunction with several directives (PARALLEL, DO/for, and
SECTIONS) to control the scoping of enclosed variables.

e These constructs provide the ability to control the data environment during execution of parallel constructs.

o They define how and which data variables in the serial section of the program are transferred to the parallel
regions of the program (and back)

o They define which variables will be visible to all threads in the parallel regions and which variables will be
privately allocated to all threads.

e Data Scope Attribute Clauses are effective only within their lexical/static extent.

e Important: Please consult the latest OpenMP specs for important details and discussion on this topic.

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 18

© S.M. Couch

Data Scope Attribute Clauses

PRIVATE Clause
B Purpose:
e The PRIVATE clause declares variables in its list to be private to each thread.

B Format:

Fortran | PRIVATE (list)

C/C++ private (list)

B~ Notes:

e PRIVATE variables behave as follows:
o A new object of the same type is declared once for each thread in the team
o All references to the original object are replaced with references to the new object
o Should be assumed to be uninitialized for each thread

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 19 © S.M. Couch

Data Scope Attribute Clauses

SHARED Clause
B Purpose:

e The SHARED clause declares variables in its list to be shared among all threads in the team.

B Format:
Fortran | SERRED (list)
C/C++ shared (list)
B Notes:

e A shared variable exists in only one memory location and all threads can read or write to that address

e |tis the programmer's responsibility to ensure that multiple threads properly access SHARED variables (such as
via CRITICAL sections)

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 20 © S.M. Couch

Data Scope Attribute Clauses

DEFAULT Clause

B Purpose:

¢ The DEFAULT clause allows the user to specify a default scope for all variables in the lexical extent of any

parallel region.

P Format:

Fortran

DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE)

C/C++

default (shared | none)

P Notes:

e Specific variables can be exempted from the default using the PRIVATE, SHARED, FIRSTPRIVATE,

LASTPRIVATE, and REDUCTION clauses

e The C/C++ OpenMP specification does not include private or firstprivate as a possible default. However, actual

Implementations may provide this option.

¢ Using NONE as a default requires that the programmer explicitly scope all variables.

P Restrictions:

e Only one DEFAULT clause can be specified on a PARALLEL directive

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 21

© S.M. Couch

Data Scope Attribute Clauses

FIRSTPRIVATE Clause
B Purpose:

e The FIRSTPRIVATE clause combines the behavior of the PRIVATE clause with automatic initialization of the
variables in its list.

B Format:

Fortran | F IRSTPRIVATE (list)

C/C++ firstprivate (list)

B Notes:

e Listed variables are initialized according to the value of their original objects prior to entry into the parallel or
work-sharing construct.

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 22 © S.M. Couch

Data Scope Attribute Clauses
LASTPRIVATE Clause
B Purpose:

e The LASTPRIVATE clause combines the behavior of the PRIVATE clause with a copy from the last loop iteration
or section to the original variable object.

P Format:

Fortran | LASTPRIVATE (list)

C/Ct++ lastprivate (list)

B Notes:

e The value copied back into the original variable object is obtained from the last (sequentially) iteration or section
of the enclosing construct.

For example, the team member which executes the final iteration for a DO section, or the team member which
does the last SECTION of a SECTIONS context performs the copy with its own values

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 23 © S.M. Couch

rf Brian Nevins 7:08 PM
PCA14: 19.4 says that OpenMP goes against the rules for floating point

PCA Questions

evaluation in C. What issues might this cause, and how would we avoid

them?

&2 ©

* Addition is non-associative, numerically...

* In OpenMP, order of additions is not guaranteed

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 24 © S.M. Couch

Matthew Zeilbeck 3:44 pMm
- =w PCA14: How does a reduction actually get computed in OpenMP? Even
PCA QueStlonS though you declare a reduction variable outside of the parallel code and
before #pragma omp ... reduction(...),each thread gets a private copy
of a variable of the same name that is initialized to some value depending

4 on the operation. Then, according to figure 19.1, it looks like the reduction
| | operation Is computed pairwise on each variable, starting with each

thread's variable (e.g. a[i]) and the private reduction variable. Then the
| | function is computed on (a[@7, a[1]),(a[2], a[37), and so on, cutting

‘ the number of remaining variables in half each time. Is this how OpenMP

does reductions? Is this what MPI is doing behind the scenes? Lastly, does

this take an O(n) runtime into an O(log n) runtime?

7 N1 @

Figure 19.1: Reduction of four items on two threads, taking into account initial values. i
x = 1nit_x

Figure 19.1 illustrates this, where 1, 2, 3, 4 are four data items, i is the OpenMP initialization, and u is #pragma omp parallel for reduction (min:x)

the user 1nitialization; each p stands for a partial reduction value. The figure is based on execution using for (int 1=0; 1i<N; 1i++)
two threads. x = min(x,datali]);

e Can be compiler-specific!

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 25 © S.M. Couch

PCA Questions

MM Andrés Galindo 4:44 pMm
70 What are the Fortran Implied Loops that the text talks about?

* Array operations:

tnvSumAlpha 1./(Alpha5(:,1)+Alpha5(:,2)+Alpha5(:,3))
omega(:,1) Alpha5(:,1)*tnvSumAlpha

omega(:,2) = Alpha5(:,2)*tnvSumAlpha
omega(:,3) Alpha5(:,3)*tnvSumAlpha

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 26 © S.M. Couch

PCA Questions

P Nathan Haut 5:47 pM
¥ PCA14: When using critical sections in OpenMP, is it possible to specify

the order in which the threads access the critical section? | could imagine

there would be scenarios when it might be important that threads access
the critical section in a specific order.

&' G

* No...
« See ORDERED directive for loops, however.

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 27 © S.M. Couch

Zhuowen Zhao 10:42 pM

PCA QueStionS PCA14: How exactly does each thread access shared data when

parallelization is initialized? Does each thread have a pointer that points to

the (same) shared data buffer or a copy of the same data (same var name)
on each thread? If former, then why omp master only changes the master
thread? (What is implicit barrier?) If latter, why would the first example in

int x = 5; 18.2 (having both shared x and local x in same variable names) be
#pragma omp parallel
{

possible? (:

&+ ©

int x; x = 3;
printf("local: x is %d\n", x);

}

After the parallel region the outer variable x will still have the value 5: there 1s no storage association
between the private variable and global one.

The private directive declares data to have a separate copy in the memory of each thread. Such private
variables are 1nitialized as they would be 1n a main program. Any computed value goes away at the end of
the parallel region. (However, see below.) Thus, you should not rely on any initial value, or on the value of
the outer variable after the region.

int x = 5;
#pragma omp parallel private (x)
{
x = x+1; // dangerous
printf("private: x is %d\n", x);
}

printf("after: x is %d\n",x); // also dangerous

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 28 © S.M. Couch

threadprivate

B Purpose:

¢ The THREADPRIVATE directive specifies that variables are replicated, with each thread having its own copy.
e Can be used to make global file scope variables (C/C++/Fortran) or common blocks (Fortran) local and
persistent to a thread through the execution of multiple parallel regions.

B Format:

|)
Fortran | : SOMP THREADPRIVATE (list)

C/C++ #pragma omp threadprivate (list)

B Notes:

e The directive must appear after the declaration of listed variables/common blocks. Each thread then gets its own
copy of the variable/common block, so data written by one thread is not visible to other threads.

¢ On first entry to a parallel region, data in THREADPRIVATE variables and common blocks should be assumed
undefined, unless a COPYIN clause is specified in the PARALLEL directive

¢ THREADPRIVATE variables differ from PRIVATE variables (discussed later) because they are able to persist
between different parallel regions of a code.

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 29

© S.M. Couch

' #include <omp.h>

int a, b, i, tid;
float x;

threadprivate

Output:

#pragma omp threadprivate(a, x)

main(int arge, char *argv([]) {

lst Parallel Region:
Thread O: a,b,x= 00 1.000000
2

omp set dynamic(0);

Thread 2: a,b,x= 2 3.200000
Thread 3: a,b,x= 3 3 4.300000 printf("1lst Parallel Region:\n");
Thread 1: a,b,x=11 2.100000 #pragma omp parallel private(b,tid)
% % % g O e e e o e ok o e o e o e e e ok ok e ok ok ok ke e e ke o e ok {
Master thread doing serial work here tid = omp_get_ thread num();
s o e g o e o % e o e ok e e ok ok ok e e e ok o e ok ok ok e e o o ok % ok e ok a = tid;
2nd Parallel Region: b ~ tld;* .
Thread 0: a,b,x= 0 0 1.000000 X g T2
) Ity * printf("Thread %d: a,b,x= %d %d %f\n",tid,a,b,x);
Thread 3: a,b,x= 3 0 4.300000 }
Thread 1: a,b,x=10 2.100000
Thread 2: a,b,x= 2 0 3.200000 Printf (" ke kkdkddkhkddd bk hkdkkkkdkkkkhkhkkkkr\n")

printf("Master thread doing serial work here\n")
Printf (" hddkdhddeddhddekdhdkdkhkddhkhddhkhkkdnkri\n")

e e

printf("2nd Parallel Region:\n");
#pragma omp parallel private(tid)

{
tid = omp _get thread num();

printf("Thread %d: a,b,x= %$d %d %f\n",tid,a,b,x);
} /* end of parallel region */

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 30 © S.M. Couch

