
Lecture 15: Worksharing, data
directives in OpenMP
CMSE 822: Parallel Computing
Prof. Sean M. Couch

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

VOTE!

• michigan.gov/vote

• https://www.betterknowaballot.com

• Drop off ballot at clerk’s office!

2

http://michigan.gov/vote
https://www.betterknowaballot.com

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

CAPS
caps.msu.edu

3

http://caps.msu.edu

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Puppy time!

4

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

OpenMP Loops, Worksharing, Reductions
see https://computing.llnl.gov/tutorials/openMP

5

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Work-sharing Constructs

• A work-sharing construct divides the execution of the enclosed code region
among the members of the team that encounter it.

• Work-sharing constructs do not launch new threads

• There is no implied barrier upon entry to a work-sharing construct, however
there is an implied barrier at the end of a work sharing construct.

6

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Work-sharing Constructs

7

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Work-sharing Constructs

8

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Work-sharing

9

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Work-sharing

10

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Work-sharing

11

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Work-sharing

12

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch13

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Sections

14

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Sections

15

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Single

16

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Data Scope Attribute Clauses

17

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Data Scope Attribute Clauses

18

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Data Scope Attribute Clauses

19

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Data Scope Attribute Clauses

20

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Data Scope Attribute Clauses

21

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Data Scope Attribute Clauses

22

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Data Scope Attribute Clauses

23

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

PCA Questions

• Addition is non-associative, numerically…

• In OpenMP, order of additions is not guaranteed

24

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

PCA Questions

• Can be compiler-specific!

25

19. OpenMP topic: Reductions

19.1 Built-in reduction operators
Arithmetic reductions: +, ⇤,�,max,min

Logical operator reductions in C: & && | || ˆ

Logical operator reductions in Fortran: .and. .or. .eqv. .neqv. .iand. .ior. .ieor.

Exercise 19.2. The maximum and minimum reductions were not added to OpenMP until
version 3.1. Write a parallel loop that computes the maximum and minimum values
in an array. Discuss the various options. Do timings to evaluate the speedup that is
attained and to find the best option.

19.2 Initial value for reductions
The treatment of initial values in reductions is slightly involved.

x = init_x
#pragma omp parallel for reduction(min:x)

for (int i=0; i<N; i++)
x = min(x,data[i]);

Each thread does a partial reduction, but its initial value is not the user-supplied init_x value, but a value
dependent on the operator. In the end, the partial results will then be combined with the user initial value.
The initialization values are mostly self-evident, such as zero for addition and one for multiplication. For
min and max they are respectively the maximal and minimal representable value of the result type.

Figure 19.1: Reduction of four items on two threads, taking into account initial values.

Figure 19.1 illustrates this, where 1,2,3,4 are four data items, i is the OpenMP initialization, and u is
the user initialization; each p stands for a partial reduction value. The figure is based on execution using
two threads.
Exercise 19.3. Write a program to test the fact that the partial results are initialized to the

unit of the reduction operator.

428 Parallel Computing – r428

19. OpenMP topic: Reductions

19.1 Built-in reduction operators
Arithmetic reductions: +, ⇤,�,max,min

Logical operator reductions in C: & && | || ˆ

Logical operator reductions in Fortran: .and. .or. .eqv. .neqv. .iand. .ior. .ieor.

Exercise 19.2. The maximum and minimum reductions were not added to OpenMP until
version 3.1. Write a parallel loop that computes the maximum and minimum values
in an array. Discuss the various options. Do timings to evaluate the speedup that is
attained and to find the best option.

19.2 Initial value for reductions
The treatment of initial values in reductions is slightly involved.

x = init_x
#pragma omp parallel for reduction(min:x)

for (int i=0; i<N; i++)
x = min(x,data[i]);

Each thread does a partial reduction, but its initial value is not the user-supplied init_x value, but a value
dependent on the operator. In the end, the partial results will then be combined with the user initial value.
The initialization values are mostly self-evident, such as zero for addition and one for multiplication. For
min and max they are respectively the maximal and minimal representable value of the result type.

Figure 19.1: Reduction of four items on two threads, taking into account initial values.

Figure 19.1 illustrates this, where 1,2,3,4 are four data items, i is the OpenMP initialization, and u is
the user initialization; each p stands for a partial reduction value. The figure is based on execution using
two threads.
Exercise 19.3. Write a program to test the fact that the partial results are initialized to the

unit of the reduction operator.

428 Parallel Computing – r428

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

PCA Questions

• Array operations:

26

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

PCA Questions

• No…

• See ORDERED directive for loops, however.

27

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

PCA Questions

28

18. OpenMP topic: Controlling thread data

int x = 5;
#pragma omp parallel

{
int x; x = 3;
printf("local: x is %d\n",x);

}

After the parallel region the outer variable x will still have the value 5: there is no storage association
between the private variable and global one.

The Fortran language does not have this concept of scope, so you have to use a private clause:
!$OMP parallel private(x)

The private directive declares data to have a separate copy in the memory of each thread. Such private
variables are initialized as they would be in a main program. Any computed value goes away at the end of
the parallel region. (However, see below.) Thus, you should not rely on any initial value, or on the value of
the outer variable after the region.

int x = 5;
#pragma omp parallel private(x)

{
x = x+1; // dangerous
printf("private: x is %d\n",x);

}
printf("after: x is %d\n",x); // also dangerous

Data that is declared private with the private directive is put on a separate stack per thread . The OpenMP
standard does not dictate the size of these stacks, but beware of stack overflow. A typical default is a few
megabyte; you can control it with the environment variable OMP_STACKSIZE. Its values can be literal or with
suffixes:

123 456k 567K 678m 789M 246g 357G

A normal Unix process also has a stack, but this is independent of the OpenMP stacks for private data. You
can query or set the Unix stack with ulimit:

[] ulimit -s
64000
[] ulimit -s 8192
[] ulimit -s
8192

The Unix stack can grow dynamically as space is needed. This does not hold for the OpenMP stacks: they
are immediately allocated at their requested size. Thus it is important not too make them too large.

18.3 Data in dynamic scope
Functions that are called from a parallel region fall in the dynamic scope of that parallel region. The rules
for variables in that function are as follows:

418 Parallel Computing – r428

18. OpenMP topic: Controlling thread data

int x = 5;
#pragma omp parallel

{
int x; x = 3;
printf("local: x is %d\n",x);

}

After the parallel region the outer variable x will still have the value 5: there is no storage association
between the private variable and global one.

The Fortran language does not have this concept of scope, so you have to use a private clause:
!$OMP parallel private(x)

The private directive declares data to have a separate copy in the memory of each thread. Such private
variables are initialized as they would be in a main program. Any computed value goes away at the end of
the parallel region. (However, see below.) Thus, you should not rely on any initial value, or on the value of
the outer variable after the region.

int x = 5;
#pragma omp parallel private(x)

{
x = x+1; // dangerous
printf("private: x is %d\n",x);

}
printf("after: x is %d\n",x); // also dangerous

Data that is declared private with the private directive is put on a separate stack per thread . The OpenMP
standard does not dictate the size of these stacks, but beware of stack overflow. A typical default is a few
megabyte; you can control it with the environment variable OMP_STACKSIZE. Its values can be literal or with
suffixes:

123 456k 567K 678m 789M 246g 357G

A normal Unix process also has a stack, but this is independent of the OpenMP stacks for private data. You
can query or set the Unix stack with ulimit:

[] ulimit -s
64000
[] ulimit -s 8192
[] ulimit -s
8192

The Unix stack can grow dynamically as space is needed. This does not hold for the OpenMP stacks: they
are immediately allocated at their requested size. Thus it is important not too make them too large.

18.3 Data in dynamic scope
Functions that are called from a parallel region fall in the dynamic scope of that parallel region. The rules
for variables in that function are as follows:

418 Parallel Computing – r428

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

threadprivate

29

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

threadprivate

30

