
Lecture 3: Single-processor 
Computing Summary
CMSE 822: Parallel Computing 
Prof. Sean M. Couch



CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Anatomy of a Computation
A CPU

2

http://www.anandtech.com/show/2556/8

GPU: early example
Comparison of block diagram of vintage GPU and CPU

 26

Single-CPU computing is parallel!



CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Anatomy of a Computation
A Node

3

“socket”



CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Anatomy of a Computation
A Node

4

Summit, ORNL



CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Anatomy of a Computation
A Node

5

Summit, ORNL



CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Anatomy of a Computation
Node-to-node Interconnect

6



CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Anatomy of a Computation
Cluster

7

Summit, ORNL



CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Memory hierarchy
Often the limiter of performance…

8

1. Single-processor Computing

Figure 1.13: Cache hierarchy in a single-core and dual-core chip

With this mix of shared and private caches, the programming model for multicore processors is becoming
a hybrid between shared and distributed memory:

Core The cores have their own private L1 cache, which is a sort of distributed memory. The above
mentioned Intel 80-core prototype has the cores communicating in a distributed memory fashion.

Socket On one socket, there is often a shared L2 cache, which is shared memory for the cores.
Node There can be multiple sockets on a single ‘node’ or motherboard, accessing the same shared

memory.
Network Distributed memory programming (see the next chapter) is needed to let nodes communicate.

Historically, multicore architectures have a precedent in multiprocessor shared memory designs (section 2.4.1)
such as the Sequent Symmetry and the Alliant FX/8 . Conceptually the program model is the same, but the
technology now allows to shrink a multiprocessor board to a multicore chip.

1.4.1 Cache coherence

With parallel processing, there is the potential for a conflict if more than one processor has a copy of the
same data item. The problem of ensuring that all cached data are an accurate copy of main memory is
referred to as cache coherence: if one processor alters its copy, the other copy needs to be updated.

In distributed memory architectures, a dataset is usually partitioned disjointly over the processors, so con-
flicting copies of data can only arise with knowledge of the user, and it is up to the user to deal with the
problem. The case of shared memory is more subtle: since processes access the same main memory, it
would seem that conflicts are in fact impossible. However, processors typically have some private cache
that contains copies of data from memory, so conflicting copies can occur. This situation arises in particular
in multicore designs.

40 Introduction to High Performance Scientific Computing

1.3. Memory Hierarchies

it is searched for in the L2 cache; if it is not found there, it is loaded from main memory. Finding data in
cache is called a cache hit , and not finding it a cache miss .

Figure 1.5 illustrates the basic facts of the cache hierarchy, in this case for the Intel Sandy Bridge chip: the
closer caches are to the FPUs, the faster, but also the smaller they are. Some points about this figure.

Figure 1.5: Memory hierarchy of an Intel Sandy Bridge, characterized by speed and size.

• Loading data from registers is so fast that it does not constitute a limitation on algorithm execution
speed. On the other hand, there are few registers. Each core has 16 general purpose registers, and
16 SIMD registers.

• The L1 cache is small, but sustains a bandwidth of 32 bytes, that is 4 double precision number,
per cycle. This is enough to load two operands each for two operations, but note that the core can
actually perform 4 operations per cycle. Thus, to achieve peak speed, certain operands need to
stay in register: typically, L1 bandwidth is enough for about half of peak performance.

• The bandwidth of the L2 and L3 cache is nominally the same as of L1. However, this bandwidth
is partly wasted on coherence issues.

• Main memory access has a latency of more than 100 cycles, and a bandwidth of 4.5 bytes per
cycle, which is about 1/7th of the L1 bandwidth. However, this bandwidth is shared by the
multiple cores of a processor chip, so effectively the bandwidth is a fraction of this number.
Most clusters will also have more than one socket (processor chip) per node, typically 2 or 4, so
some bandwidth is spent on maintaining cache coherence (see section 1.4), again reducing the
bandwidth available for each chip.

On level 1, there are separate caches for instructions and data; the L2 and L3 cache contain both data and
instructions.

You see that the larger caches are increasingly unable to supply data to the processors fast enough. For this
reason it is necessary to code in such a way that data is kept as much as possible in the highest cache level
possible. We will discuss this issue in detail in the rest of this chapter.

Exercise 1.5. The L1 cache is smaller than the L2 cache, and if there is an L3, the L2 is smaller
than the L3. Give a practical and a theoretical reason why this is so.

Victor Eijkhout 27



CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Memory hierarchy
Need to feed the beast (er, CPU)

9

1.3. Memory Hierarchies

For full utilization of the bandwidth, at all times a volume of data equal to the bandwidth times the latency
has to be in flight. Since these data have to be independent, we get a statement of Little’s law [131]:

Concurrency = Bandwidth ⇥ Latency.

This is illustrated in figure 1.12. The problem with maintaining this concurrency is not that a program does

Figure 1.12: Illustration of Little’s Law that states how much independent data needs to be in flight

not have it; rather, the program is to get the compiler and runtime system recognize it. For instance, if a
loop traverses a long array, the compiler will not issue a large number of memory requests. The prefetch
mechanism (section 1.3.5) will issue some memory requests ahead of time, but typically not enough. Thus,
in order to use the available bandwidth, multiple streams of data need to be under way simultaneously.
Therefore, we can also phrase Little’s law as

E↵ective throughput = Expressed concurrency/Latency.

1.3.7 Memory banks

Above, we discussed issues relating to bandwidth. You saw that memory, and to a lesser extent caches, have
a bandwidth that is less than what a processor can maximally absorb. The situation is actually even worse
than the above discussion made it seem. For this reason, memory is often divided into memory banks that
are interleaved: with four memory banks, words 0, 4, 8, . . . are in bank 0, words 1, 5, 9, . . . are in bank 1, et
cetera.

Suppose we now access memory sequentially, then such 4-way interleaved memory can sustain four times
the bandwidth of a single memory bank. Unfortunately, accessing by stride 2 will halve the bandwidth,
and larger strides are even worse. In practice the number of memory banks will be higher, so that strided
memory access with small strides will still have the full advertised bandwidth.

This concept of banks can also apply to caches. For instance, the cache lines in the L1 cache of the AMD
Barcelona chip are 16 words long, divided into two interleaved banks of 8 words. This means that sequential
access to the elements of a cache line is efficient, but strided access suffers from a deteriorated performance.

Victor Eijkhout 37

Little’s Law: Concurrency = Bandwidth x Latency



CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Memory hierarchy
Absolute unit

10

What is the fundamental unit of memory movement?


a. page


b. word


c. line


d. byte



CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Memory hierarchy
Cache line

11

Words: usually 64 bits

Lines: 64-128 bytes



CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Memory hierarchy
Strided access

12

Stride 1

1.3. Memory Hierarchies

Exercise 1.6. How does the LRU replacement policy related to direct-mapped versus associa-
tive caches?

Exercise 1.7. Sketch a simple scenario, and give some (pseudo) code, to argue that LRU is
preferable over FIFO as a replacement strategy.

1.3.4.7 Cache lines

Data movement between memory and cache, or between caches, is not done in single bytes, or even words.
Instead, the smallest unit of data moved is called a cache line, sometimes called a cache block . A typical
cache line is 64 or 128 bytes long, which in the context of scientific computing implies 8 or 16 double
precision floating point numbers. The cache line size for data moved into L2 cache can be larger than for
data moved into L1 cache.

A first motivation for cache lines is a practical one: it simplifies the circuitry involved. Secondly, cachelines
make sense since many codes show spatial locality; section 1.6.2.

Figure 1.6: Accessing 4 elements at stride 1

Conversely, there is now a strong incentive to code in
such a way to exploit this locality, since any mem-
ory access costs the transfer of several words (see sec-
tion 1.7.4 for some examples). An efficient program
then tries to use the other items on the cache line, since
access to them is effectively free. This phenomenon is
visible in code that accesses arrays by stride: elements
are read or written at regular intervals.

Stride 1 corresponds to sequential access of an array:
for (i=0; i<N; i++)

... = ... x[i] ...

Let us use as illustration a case with 4 words per cacheline. Requesting the first elements loads the whole
cacheline that contains it into cache. A request for the 2nd, 3rd, and 4th element can then be satisfied from
cache, meaning with high bandwidth and low latency.

Figure 1.7: Accessing 4 elements at stride 3

A larger stride
for (i=0; i<N; i+=stride)

... = ... x[i] ...

implies that in every cache line only certain elements
are used. We illustrate that with stride 3: requesting the
first elements loads a cacheline, and this cacheline also
contains the second element. However, the third element is on the next cacheline, so loading this incurs
the latency and bandwidth of main memory. The same holds for the fourth element. Loading four elements
now needed loading three cache lines instead of one, meaning that two-thirds of the available bandwidth
has been wasted. (This second case would also incur three times the latency of the first, if it weren’t for a

Victor Eijkhout 29

1.3. Memory Hierarchies

Exercise 1.6. How does the LRU replacement policy related to direct-mapped versus associa-
tive caches?

Exercise 1.7. Sketch a simple scenario, and give some (pseudo) code, to argue that LRU is
preferable over FIFO as a replacement strategy.

1.3.4.7 Cache lines

Data movement between memory and cache, or between caches, is not done in single bytes, or even words.
Instead, the smallest unit of data moved is called a cache line, sometimes called a cache block . A typical
cache line is 64 or 128 bytes long, which in the context of scientific computing implies 8 or 16 double
precision floating point numbers. The cache line size for data moved into L2 cache can be larger than for
data moved into L1 cache.

A first motivation for cache lines is a practical one: it simplifies the circuitry involved. Secondly, cachelines
make sense since many codes show spatial locality; section 1.6.2.

Figure 1.6: Accessing 4 elements at stride 1

Conversely, there is now a strong incentive to code in
such a way to exploit this locality, since any mem-
ory access costs the transfer of several words (see sec-
tion 1.7.4 for some examples). An efficient program
then tries to use the other items on the cache line, since
access to them is effectively free. This phenomenon is
visible in code that accesses arrays by stride: elements
are read or written at regular intervals.

Stride 1 corresponds to sequential access of an array:
for (i=0; i<N; i++)

... = ... x[i] ...

Let us use as illustration a case with 4 words per cacheline. Requesting the first elements loads the whole
cacheline that contains it into cache. A request for the 2nd, 3rd, and 4th element can then be satisfied from
cache, meaning with high bandwidth and low latency.

Figure 1.7: Accessing 4 elements at stride 3

A larger stride
for (i=0; i<N; i+=stride)

... = ... x[i] ...

implies that in every cache line only certain elements
are used. We illustrate that with stride 3: requesting the
first elements loads a cacheline, and this cacheline also
contains the second element. However, the third element is on the next cacheline, so loading this incurs
the latency and bandwidth of main memory. The same holds for the fourth element. Loading four elements
now needed loading three cache lines instead of one, meaning that two-thirds of the available bandwidth
has been wasted. (This second case would also incur three times the latency of the first, if it weren’t for a

Victor Eijkhout 29

Stride stride

1.3. Memory Hierarchies

Exercise 1.6. How does the LRU replacement policy related to direct-mapped versus associa-
tive caches?

Exercise 1.7. Sketch a simple scenario, and give some (pseudo) code, to argue that LRU is
preferable over FIFO as a replacement strategy.

1.3.4.7 Cache lines

Data movement between memory and cache, or between caches, is not done in single bytes, or even words.
Instead, the smallest unit of data moved is called a cache line, sometimes called a cache block . A typical
cache line is 64 or 128 bytes long, which in the context of scientific computing implies 8 or 16 double
precision floating point numbers. The cache line size for data moved into L2 cache can be larger than for
data moved into L1 cache.

A first motivation for cache lines is a practical one: it simplifies the circuitry involved. Secondly, cachelines
make sense since many codes show spatial locality; section 1.6.2.

Figure 1.6: Accessing 4 elements at stride 1

Conversely, there is now a strong incentive to code in
such a way to exploit this locality, since any mem-
ory access costs the transfer of several words (see sec-
tion 1.7.4 for some examples). An efficient program
then tries to use the other items on the cache line, since
access to them is effectively free. This phenomenon is
visible in code that accesses arrays by stride: elements
are read or written at regular intervals.

Stride 1 corresponds to sequential access of an array:
for (i=0; i<N; i++)

... = ... x[i] ...

Let us use as illustration a case with 4 words per cacheline. Requesting the first elements loads the whole
cacheline that contains it into cache. A request for the 2nd, 3rd, and 4th element can then be satisfied from
cache, meaning with high bandwidth and low latency.

Figure 1.7: Accessing 4 elements at stride 3

A larger stride
for (i=0; i<N; i+=stride)

... = ... x[i] ...

implies that in every cache line only certain elements
are used. We illustrate that with stride 3: requesting the
first elements loads a cacheline, and this cacheline also
contains the second element. However, the third element is on the next cacheline, so loading this incurs
the latency and bandwidth of main memory. The same holds for the fourth element. Loading four elements
now needed loading three cache lines instead of one, meaning that two-thirds of the available bandwidth
has been wasted. (This second case would also incur three times the latency of the first, if it weren’t for a

Victor Eijkhout 29



CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Memory hierarchy
Reuse is key to performance!

• Compulsory cache miss: first time memory is referenced


• Capacity cache miss: cache not big enough to fit problem


• Conflict cache miss: data mapped to same cache location as another


• Invalidation cache miss: another core changed value at memory address

13



CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Memory hierarchy
False sharing

• Cores access and alter data in same cache line

14

1.4. Multicore architectures

bus traffic, so that it can invalidate or update its own cacheline copies when another core modifies its copy.
Invalidating is cheaper than updating since it is a bit operation, while updating involves copying the whole
cacheline.

Exercise 1.13. When would updating pay off? Write a simple cache simulator to evaluate this
question.

Since snooping often involves broadcast information to all cores, it does not scale beyond a small number of
cores. A solution that scales better is using a tag directory: a central directory that contains the information
on what data is present in some cache, and what cache it is in specifically. For processors with large numbers
of cores (such as the Intel Xeon Phi ) the directory can be distributed over the cores.

1.4.1.2 False sharing

The cache coherence problem can even appear if the cores access different items. For instance, a declaration

double x,y;

will likely allocate x and y next to each other in memory, so there is a high chance they fall on the same
cacheline. Now if one core updates x and the other y, this cacheline will continuously be moved between
the cores. This is called false sharing .

The most common case of false sharing happens when threads update consecutive locations of an array.
For instance, in the following OpenMP fragment all threads update their own location in an array of partial
results:

local_results = new double[num_threads];
#pragma omp parallel
{

int thread_num = omp_get_thread_num();
for (int i=my_lo; i<my_hi; i++)

local_results[thread_num] = ... f(i) ...
}
global_result = g(local_results)

While there is no actual race condition (as there would be if the threads all updated the global_result
variable), this code will have low performance, since the cacheline(s) with the local_result array will
continuously be invalidated.

1.4.1.3 Tag directories

In multicore processors with distributed, but coherent, caches (such as the Intel Xeon Phi ) the tag directo-
ries can themselves be distributed. This increases the latency of cache lookup.

Victor Eijkhout 41



CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Exercise 1.14
Matrix-matrix Multiply

15

1.6. Locality and data reuse

Exercise 1.14. The matrix-matrix product, considered as operation, clearly has data reuse by
the above definition. Argue that this reuse is not trivially attained by a simple imple-
mentation. What determines whether the naive implementation has reuse of data that is
in cache?

[In this discussion we were only concerned with the number of operations of a given implementation, not
the mathematical operation. For instance, there are ways of performing the matrix-matrix multiplication
and Gaussian elimination algorithms in fewer than O(n3) operations [178, 159]. However, this requires a
different implementation, which has its own analysis in terms of memory access and reuse.]

The matrix-matrix product is the heart of the LINPACK benchmark [49]; see section 2.11.4. Using this
as the sole measure of benchmarking a computer may give an optimistic view of its performance: the
matrix-matrix product is an operation that has considerable data reuse, so it is relatively insensitive to
memory bandwidth and, for parallel computers, properties of the network. Typically, computers will attain
60–90% of their peak performance on the Linpack benchmark. Other benchmark may give considerably
lower figures.

1.6.1.2 The roofline model

There is an elegant way of talking about how arithmetic intensity, which is a statement about the ideal
algorithm, not its implementation, interacts with hardware parameters and the actual implementation to
determine performance. This is known as the roofline model [191], and it expresses the basic fact that
performance is bounded by two factors, illustrated in the first graph of figure 1.16.

1. The peak performance , indicated by the horizontal line at the top of the graph, is an absolute
bound on the performance3, achieved only if every aspect of a CPU (pipelines, multiple floating
point units) are perfectly used. The calculation of this number is purely based on CPU properties
and clock cycle; it is assumed that memory bandwidth is not a limiting factor.

2. The number of operations per second is also limited by the product of the bandwidth, an absolute
number, and the arithmetic intensity:

operations
second

=
operations
data item

· data items
second

This is depicted by the linearly increasing line in the graph.
The roofline model is an elegant way of expressing that various factors lower the ceiling. For instance, if
an algorithm fails to use the full SIMD width , this inbalance lowers the attainable peak. The second graph
in figure 1.16 indicates various factors that lower the ceiling. There are also various factors that lower the
available bandwidth, such as imperfect data hiding. This is indicated by a lowering of the sloping roofline
in the third graph.

For a given arithmetic intensity, the performance is determined by where its vertical line intersects the roof
line. If this is at the horizontal part, the computation is called compute-bound : performance is determined
by characteristics of the processor, and bandwidth is not an issue. On the other hand, if that vertical line in-
tersects the sloping part of the roof, the computation is called bandwidth-bound : performance is determined
by the memory subsystem, and the full capacity of the processor is not used.

3. An old joke states that the peak performance is that number that the manufacturer guarantees you will never exceed

Victor Eijkhout 45

Caches can only hold a finite amount of data. Once a row of A and a 
column of B take up more than the size of the cache, their elements 
will be flushed between iterations of the outer loop. 




CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Project 1
Group work

16


