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Why compute in parallel?

• Need more memory (big problem)


• Need to go faster


• Both
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Question:
If I run a problem on p processors will it run p times faster than 
on one processor?
• Yes


• No


• It depends…
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Serial

• One worker builds one car, one at a 
time, do all steps necessary to 
assemble the car


• In Flynn’s taxonomy, what of 
computation is this?


• SISD


• SIMD


• MISD


• MIMD

Kinds of parallelism
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Data parallelism

• N workers build N cars simultaneously, 
each worker completely all steps 
necessary to assemble one car


• In Flynn’s taxonomy, what of 
computation is this?


• SISD


• SIMD


• MISD


• MIMD

Kinds of parallelism

5
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Functional parallelism

• N workers build one car, each worker 
completely some unique subset of the 
steps necessary to assemble one car


• In Flynn’s taxonomy, what of 
computation is this?


• SISD


• SIMD


• MISD


• MIMD

Kinds of parallelism
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Data/Functional parallelism

• N workers build N cars 
simultaneously, each worker 
completely some unique subset 
of the steps necessary to 
assemble one car


• Notice the analogy with 
communication and bandwidth 
represented by the moving 
assembly line!

Kinds of parallelism
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Speedup, efficiency, and Amdahl

• Speedup: 


• Efficiency: 


• Amdahl’s Law:


• asymptotically, 


• with communication:

8

2.2. Theoretical concepts

2.2.1.3 Critical path

The above definitions of speedup and efficiency made an implicit assumption that parallel work can be
arbitrarily subdivided. As you saw in the summing example in section 2.1, this may not always be the
case: there can be dependencies between operations, which limits the amount of parallelism that can be
employed.

We define the critical path as a (possibly non-unique) chain of dependencies of maximum length. Since the
tasks on a critical path need to be executed one after another, the length of the critical path is a lower bound
on parallel execution time.

To make these notions precise, we define the following concepts:

Definition 1

T1 : the time the computation takes on a single processor
Tp : the time the computation takes with p processors
T1 : the time the computation takes if unlimited processors are available
P1 : the value of p for which Tp = T1

With these concepts, we can define the average parallelism of an algorithm as T1/T1, and the length of the
critical path is T1.

We will now give a few illustrations by showing a graph of tasks and their dependencies. We assume for
simplicity that each node is a unit time task.

The maximum number of processors that can be used is 2 and the average paral-
lelism is 4/3:

T1 = 4, T1 = 3 ) T1/T1 = 4/3
T2 = 3, S2 = 4/3, E2 = 2/3
P1 = 2

The maximum number of processors that can be used is 3 and the average paral-
lelism is 9/5; efficiency is maximal for p = 2:

T1 = 9, T1 = 5 ) T1/T1 = 9/5
T2 = 6, S2 = 3/2, E2 = 3/4
T3 = 5, S3 = 9/5, E3 = 3/5
P1 = 3
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2.1.2 Parallelism in the algorithm versus in the code

Often we are in the situation that we want to parallelize an algorithm that has a common expression in
sequential form. In some cases, this sequential form can easily be parallelized, such as in the vector addition
discussed above. In other cases there is no simple way to parallelize the algorithm; we will discuss linear
recurrences in section 6.10.2. And in yet another case the sequential code may look not parallel, but the
algorithm actually has parallelism.

Exercise 2.5.
for i in [1:N]:

x[0,i] = some_function_of(i)
x[i,0] = some_function_of(i)

for i in [1:N]:
for j in [1:N]:

x[i,j] = x[i-1,j]+x[i,j-1]

Answer the following questions about the double i,j loop:
1. Are the iterations of the inner loop independent, that is, could they be executed

simultaneously?
2. Are the iterations of the outer loop independent?
3. If x[1,1] is known, show that x[2,1] and x[1,2] can be computed inde-

pendently.
4. Does this give you an idea for a parallelization strategy?

We will discuss the solution to this conundrum in section 6.10.1. In general, the whole of chapter 6 will be
about the amount of parallelism intrinsic in scientific computing algorithms.

2.2 Theoretical concepts

There are two important reasons for using a parallel computer: to have access to more memory or to obtain
higher performance. It is easy to characterize the gain in memory, as the total memory is the sum of the
individual memories. The speed of a parallel computer is harder to characterize. This section will have an
extended discussion on theoretical measures for expressing and judging the gain in execution speed from
going to a parallel architecture.

2.2.1 Definitions

2.2.1.1 Speedup and efficiency

A simple approach to defining speedup is to let the same program run on a single processor, and on a parallel
machine with p processors, and to compare runtimes. With T1 the execution time on a single processor and
Tp the time on p processors, we define the speedup as Sp = T1/Tp. (Sometimes T1 is defined as ‘the best
time to solve the problem on a single processor’, which allows for using a different algorithm on a single
processor than in parallel.) In the ideal case, Tp = T1/p, but in practice we don’t expect to attain that,

Victor Eijkhout 73

2. Parallel Computing

so Sp  p. To measure how far we are from the ideal speedup, we introduce the efficiency Ep = Sp/p.
Clearly, 0 < Ep  1.

There is a practical problem with the above definitions: a problem that can be solved on a parallel machine
may be too large to fit on any single processor. Conversely, distributing a single processor problem over
many processors may give a distorted picture since very little data will wind up on each processor. Below
we will discuss more realistic measures of speed-up.

There are various reasons why the actual speed is less than p. For one, using more than one processors
necessitates communication, which is overhead that was not part of the original computation. Secondly, if
the processors do not have exactly the same amount of work to do, they may be idle part of the time (this is
known as load unbalance), again lowering the actually attained speedup. Finally, code may have sections
that are inherently sequential.

Communication between processors is an important source of a loss of efficiency. Clearly, a problem that
can be solved without communication will be very efficient. Such problems, in effect consisting of a number
of completely independent calculations, is called embarrassingly parallel ; it will have close to a perfect
speedup and efficiency.
Exercise 2.6. The case of speedup larger than the number of processors is called superlinear

speedup . Give a theoretical argument why this can never happen.
In practice, superlinear speedup can happen. For instance, suppose a problem is too large to fit in memory,
and a single processor can only solve it by swapping data to disc. If the same problem fits in the memory of
two processors, the speedup may well be larger than 2 since disc swapping no longer occurs. Having less,
or more localized, data may also improve the cache behaviour of a code.

2.2.1.2 Cost-optimality

In cases where the speedup is not perfect we can define overhead as the difference

To = pTp � T1.

We can also interpret this as the difference between simulating the parallel algorithm on a single processor,
and the actual best sequential algorithm.

We will later see two different types of overhead:
1. The parallel algorithm can be essentially different from the sequential one. For instance, sorting

algorithms have a complexity O(n log n), but the parallel bitonic sort (section 8.6) has complex-
ity O(n log2 n).

2. The parallel algorithm can have overhead derived from the process or parallelizing, such as the
cost of sending messages. As an example, section 6.2.2 analyzes the communication overhead in
the matrix-vector product.

A parallel algorithm is called cost-optimal if the overhead is at most of the order of the running time of the
sequential algorithm.
Exercise 2.7. The definition of overhead above implicitly assumes that overhead is not paral-

lelizable. Discuss this assumption in the context of the two examples above.
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The crucial question here is whether the hypercube (an n-dimensional object) can be embedded in 3-
dimensional space, while keeping the distance (measured in meters) constant between connected neigh-
bours. It is easy to see that a 3-dimensional grid can be scaled up arbitrarily while maintaining a unit wire
length, but the question is not clear for a hypercube. There, the length of the wires may have to increase as
n grows, which runs afoul of the finite speed of electrons.

We sketch a proof (see [62] for more details) that, in our three dimensional world and with a finite speed
of light, speedup is limited to 4

p
n for a problem on n processors, no matter the interconnect. The argument

goes as follows. Consider an operation that involves collecting a final result on one processor. Assume
that each processor takes a unit volume of space, produces one result per unit time, and can send one data
item per unit time. Then, in an amount of time t, at most the processors in a ball with radius t, that is,
O(t3) processors can contribute to the final result; all others are too far away. In time T , then, the number
of operations that can contribute to the final result is

R T
0 t3dt = O(T 4). This means that the maximum

achievable speedup is the fourth root of the sequential time.

Finally, the question ‘what if we had infinitely many processors’ is not realistic as such, but we will allow it
in the sense that we will ask the weak scaling question (section 2.2.4) ‘what if we let the problem size and
the number of processors grow proportional to each other’. This question is legitimate, since it corresponds
to the very practical deliberation whether buying more processors will allow one to run larger problems,
and if so, with what ‘bang for the buck’.

2.2.3 Amdahl’s law

One reason for less than perfect speedup is that parts of a code can be inherently sequential. This limits the
parallel efficiency as follows. Suppose that 5% of a code is sequential, then the time for that part can not be
reduced, no matter how many processors are available. Thus, the speedup on that code is limited to a factor
of 20. This phenomenon is known as Amdahl’s Law [4], which we will now formulate.

Let Fs be the sequential fraction and Fp be the parallel fraction (or more strictly: the ‘parallelizable’
fraction) of a code, respectively. Then Fp + Fs = 1. The parallel execution time Tp on p processors is the
sum of the part that is sequential T1Fs and the part that can be parallelized T1Fp/P :

TP = T1(Fs + Fp/P ). (2.1)

As the number of processors grows P ! 1, the parallel execution time now approaches that of the
sequential fraction of the code: TP # T1Fs. We conclude that speedup is limited by SP  1/Fs and
efficiency is a decreasing function E ⇠ 1/P .

The sequential fraction of a code can consist of things such as I/O operations. However, there are also parts
of a code that in effect act as sequential. Consider a program that executes a single loop, where all iterations
can be computed independently. Clearly, this code is easily parallelized. However, by splitting the loop in
a number of parts, one per processor, each processor now has to deal with loop overhead: calculation of
bounds, and the test for completion. This overhead is replicated as many times as there are processors. In
effect, loop overhead acts as a sequential part of the code.
Exercise 2.10. Let’s do a specific example. Assume that a code has a setup that takes 1 second

and a parallelizable section that takes 1000 seconds on one processor. What are the
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that each processor takes a unit volume of space, produces one result per unit time, and can send one data
item per unit time. Then, in an amount of time t, at most the processors in a ball with radius t, that is,
O(t3) processors can contribute to the final result; all others are too far away. In time T , then, the number
of operations that can contribute to the final result is

R T
0 t3dt = O(T 4). This means that the maximum

achievable speedup is the fourth root of the sequential time.

Finally, the question ‘what if we had infinitely many processors’ is not realistic as such, but we will allow it
in the sense that we will ask the weak scaling question (section 2.2.4) ‘what if we let the problem size and
the number of processors grow proportional to each other’. This question is legitimate, since it corresponds
to the very practical deliberation whether buying more processors will allow one to run larger problems,
and if so, with what ‘bang for the buck’.

2.2.3 Amdahl’s law

One reason for less than perfect speedup is that parts of a code can be inherently sequential. This limits the
parallel efficiency as follows. Suppose that 5% of a code is sequential, then the time for that part can not be
reduced, no matter how many processors are available. Thus, the speedup on that code is limited to a factor
of 20. This phenomenon is known as Amdahl’s Law [4], which we will now formulate.

Let Fs be the sequential fraction and Fp be the parallel fraction (or more strictly: the ‘parallelizable’
fraction) of a code, respectively. Then Fp + Fs = 1. The parallel execution time Tp on p processors is the
sum of the part that is sequential T1Fs and the part that can be parallelized T1Fp/P :

TP = T1(Fs + Fp/P ). (2.1)

As the number of processors grows P ! 1, the parallel execution time now approaches that of the
sequential fraction of the code: TP # T1Fs. We conclude that speedup is limited by SP  1/Fs and
efficiency is a decreasing function E ⇠ 1/P .

The sequential fraction of a code can consist of things such as I/O operations. However, there are also parts
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bounds, and the test for completion. This overhead is replicated as many times as there are processors. In
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and a parallelizable section that takes 1000 seconds on one processor. What are the
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speedup and efficiency if the code is executed with 100 processors? What are they for
500 processors? Express your answer to at most two significant digits.

Exercise 2.11. Investigate the implications of Amdahl’s law: if the number of processors P
increases, how does the parallel fraction of a code have to increase to maintain a fixed
efficiency?

2.2.3.1 Amdahl’s law with communication overhead

In a way, Amdahl’s law, sobering as it is, is even optimistic. Parallelizing a code will give a certain speedup,
but it also introduces communication overhead that will lower the speedup attained. Let us refine our model
of equation (2.1) (see [130, p. 367]):

Tp = T1(Fs + Fp/P ) + Tc,

where Tc is a fixed communication time.

To assess the influence of this communication overhead, we assume that the code is fully parallelizable,
that is, Fp = 1. We then find that

Sp =
T1

T1/p + Tc
. (2.2)

For this to be close to p, we need Tc ⌧ T1/p or p ⌧ T1/Tc. In other words, the number of processors
should not grow beyond the ratio of scalar execution time and communication overhead.

2.2.3.2 Gustafson’s law

Amdahl’s law was thought to show that large numbers of processors would never pay off. However, the
implicit assumption in Amdahl’s law is that there is a fixed computation which gets executed on more
and more processors. In practice this is not the case: typically there is a way of scaling up a problem (in
chapter 4 you will learn the concept of ‘discretization’), and one tailors the size of the problem to the
number of available processors.

A more realistic assumption would be to say that there is a sequential fraction independent of the problem
size, and parallel fraction that can be arbitrarily replicated. To formalize this, instead of starting with the
execution time of the sequential program, let us start with the execution time of the parallel program, and
say that

Tp = T (Fs + Fp) with Fs + Fp = 1.

Now we have two possible definitions of T1. First of all, there is the T1 you get from setting p = 1 in Tp.
(Convince yourself that that is actually the same as Tp.) However, what we need is T1 describing the time
to do all the operations of the parallel program. This is:

T1 = FsT + p · FpT.
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Exercise 2.10

• Sequential time: T1 = 1001


• With 100 processors: T100 = 11,        S100 = 1001/11 ~ 91,        E100 ~ 0.91


• With 500 processors: T500 = 3,        S500 = 333,                 E500 ~ 0.67
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2.2.3 Amdahl’s law

One reason for less than perfect speedup is that parts of a code can be inherently sequential. This limits the
parallel efficiency as follows. Suppose that 5% of a code is sequential, then the time for that part can not be
reduced, no matter how many processors are available. Thus, the speedup on that code is limited to a factor
of 20. This phenomenon is known as Amdahl’s Law [4], which we will now formulate.

Let Fs be the sequential fraction and Fp be the parallel fraction (or more strictly: the ‘parallelizable’
fraction) of a code, respectively. Then Fp + Fs = 1. The parallel execution time Tp on p processors is the
sum of the part that is sequential T1Fs and the part that can be parallelized T1Fp/P :

TP = T1(Fs + Fp/P ). (2.1)

As the number of processors grows P ! 1, the parallel execution time now approaches that of the
sequential fraction of the code: TP # T1Fs. We conclude that speedup is limited by SP  1/Fs and
efficiency is a decreasing function E ⇠ 1/P .

The sequential fraction of a code can consist of things such as I/O operations. However, there are also parts
of a code that in effect act as sequential. Consider a program that executes a single loop, where all iterations
can be computed independently. Clearly, this code is easily parallelized. However, by splitting the loop in
a number of parts, one per processor, each processor now has to deal with loop overhead: calculation of
bounds, and the test for completion. This overhead is replicated as many times as there are processors. In
effect, loop overhead acts as a sequential part of the code.
Exercise 2.10. Let’s do a specific example. Assume that a code has a setup that takes 1 second

and a parallelizable section that takes 1000 seconds on one processor. What are the
speedup and efficiency if the code is executed with 100 processors? What are they for
500 processors? Express your answer to at most two significant digits.

Solution to exercise 2.10. The sequential time is T1 = 1001. With 100 processors:

T100 = 11, S100 = 1001/11 ⇡ 91, E100 ⇡ .91

T500 = 3, S500 = 333, E500 ⇡ .67

Exercise 2.11. Investigate the implications of Amdahl’s law: if the number of processors P
increases, how does the parallel fraction of a code have to increase to maintain a fixed
efficiency?

Solution to exercise 2.11. Recall Sp = EpP and Sp = T/
�
T (fs + fp/P )

�
where fs + fp = 1.

Thus

fs + fp/P = 1/EpP

ultimately giving

fp =
1 � 1/EpP

1 � 1/P
.

This is a hyperbola with an asymptote of 1 as P ! 1. Salient point: the curve has a
zero for Pp = 1/Ep. This corresponds to the fact that P = 1/Ep ) Sp = 1, which
takes place if fp = 0. Smaller values of P correspond to a speedup < 1, which is not
interesting or meaningful.
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Scalability

• Strong scaling: Fixed problem size, increased number of processes


• Weak scaling: Fixed problem size per process

10
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Scalability
“Real” world example

• Domain decomposition in a fluid 
calculation

11
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Scalability
“Real” world example

• Strong scaling: challenging!


• Hard to fit big problem on few 
processes


• Communication cost AND serial 
fraction are major limiters

12
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Scalability
“Real” world example

• Weak scaling: better idea of how 
application will perform “at scale”


• Strong and weak scaling together 
are needed to get a sense of real 
efficiency

13

512 1024 2048 4096 8192 16384 32k 49k
Mira nodes (4 MPI ranks/node, 16 OMP threads/rank)

0

5

10

15

20

25

30

10
°

7
co

re
-h

ou
rs

pe
r

zo
ne

-s
te

p

Mira weak scaling

∫-Transport
MHD
Total evolution



CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Questions
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Questions
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Questions
Granularity

• “the amount of work (or the task size) 
that a processing element can 
perform before having to 
communicate or synchronize with 
other processing elements”
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Questions
Surface to volume
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