CMSE 822: Parallel (
Prof. Sean M. Couch

Lecture 8: Intro4

. ']1:‘[r
‘ ‘ ‘ i lm
T [

//// {11/

(A

Brief MPI Tutorial

See https://computing.linl.gov/tutorials/mpi/

also: http://www.mpi-forum.org/docs/

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 2 © S.M. Couch

http://www.mpi-forum.org/docs/

§\|r
{

What is MPI?

B An Interface Specification:

M P | = Message Passing Interface
MPI is a specification for the developers and users of message passing libraries.

By itself, it is NOT a library - but rather the specification of what such a library
should be.

MPI primarily addresses the message-passing parallel programming model: data is moved from the address space of one
process to that of another process through cooperative operations on each process.

Simply stated, the goal of the Message Passing Interface is to provide a widely used standard for writing message passing
programs. The interface attempts to be:

Practical

Portable

Efficient

Flexible

o

O O O

The MPI standard has gone through a number of revisions, with the most recent version being MPI-3.x

Interface specifications have been defined for C and Fortran90 language bindings:
o C++ bindings from MPI-1 are removed in MPI-3
o MPI-3 also provides support for Fortran 2003 and 2008 features

Actual MPI library implementations differ in which version and features of the MPI standard they support. Developers/users will
need to be aware of this.

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 3 © S.M. Couch

$“‘r
R

What is MPI?

B Programming Model:

¢ Originally, MPI was designed for distributed memory architectures, which were becoming increasingly popular at that time (1980s -
early 1990s).

¢ As architecture trends changed, shared memory SMPs were combined over networks creating hybrid distributed memory / shared
memory systems.

¢ MPI implementors adapted their libraries to handle both types of underlying memory architectures seamlessly. They also
adapted/developed ways of handling different interconnects and protocols.

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 4 © S.M. Couch

What is MPI?

e Today, MPI runs on virtually any hardware platform:
o Distributed Memory
o Shared Memory
o Hybrid

e The programming model clearly remains a distributed memory model however, regardless of the underlying physical architecture
of the machine.

o All parallelism is explicit: the programmer is responsible for correctly identifying parallelism and implementing parallel algorithms
using MPI constructs.

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 5 © S.M. Couch

S\“r
{

What is MPI?

B Reasons for Using MPI:

e Standardization - MPI is the only message passing library that can be considered a standard. It is supported on virtually all HPC
platforms. Practically, it has replaced all previous message passing libraries.

¢ Portability - There is little or no need to modify your source code when you port your application to a different platform that
supports (and is compliant with) the MPI standard.

e Performance Opportunities - Vendor implementations should be able to exploit native hardware features to optimize
performance. Any implementation is free to develop optimized algorithms.

¢ Functionality - There are over 430 routines defined in MPI-3, which includes the majority of those in MPI-2 and MPI-1.
r's

Note: Most MPI programs can be written using a dozen or less routines
~

¢ Availability - A variety of implementations are available, both vendor and public domain.

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 6 © S.M. Couch

MPI Implementations

¢ Although the MPI programming interface has been standardized, actual library implementations will differ.

e For example, just a few considerations of many:

Which version of the MPI standard is supported?

Are all of the features in a particular MPI version supported?
Have any new features been added?

What network interfaces are supported?

How are MPI applications compiled?

How are MPI jobs launched?

Runtime environment variable controls?

O O 0O O 0O 0 °O

e MPI library implementations on LC systems vary, as do the compilers they are built for. These are summarized in the table below:

MPI Library Where? Compilers
MVAPICH Linux clusters GNU, Intel, PG, Clang
Open MPI Linux clusters GNU, Intel, PG, Clang
Intel MPI Linux clusters Intel, GNU
IBM Spectrum MPI | Coral Early Access and Sierra clusters | IBM, GNU, PGI, Clang

e Each MPI library is briefly discussed in the following sections, including links to additional detailed information.

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 7 © S.M. Couch

Getting Started with MPI

B General MPI Program Structure:

- #inCIude "mpi . h"

#include <stdio.h>

Declarations, prototypes, etc. #include <stdlib.h>
Program Begins int main (int argc, char *argv[])
. {
Serial code int numtasks, rank, dest, source, rc, count, tag=1l;

char inmsg, outmsg='x';
MPI_Status Stat;

_ Parallel code begins MPI_Init(&argc,&argv);
MPI_Comm size(MPI_COMM WORLD, &numtasks);

MPI_Comm_rank (MPI_COMM WORLD, &rank);

if (rank == 0) {

. dest =
source = 1;
rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM WORLD) ;
rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM WORLD, &Stat);
. }
else if (rank == 1) {
. dest = 0;
source = 0;
Parallel code ends rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM WORLD, &Stat);
rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM WORLD) ;
’ }
Serial code
. MPI_Finalize();
}
Program Ends

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 9 © S.M. Couch

Getting Started

B Header File:

¢ Required for all programs that make MPI library calls.

C include file Fortran include file

#include "mpi.h" [include 'mpif.h’

e With MPI-3 Fortran, the USE mpi_£08 module is preferred over using the include file shown above.

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 10 © S.M. Couch

Getting Started

B Format of MPI Calls:

e C names are case sensitive; Fortran names are not.

S\“r
{

e Programs must not declare variables or functions with names beginning with the prefix MP1_ or PMPI__ (profiling interface).

C Binding
Format: rc = MPI_Xxxxx(parameter, ...)
Example: |rc = MPI_Bsend(&buf,count,type,dest,tag,comm)
Error code: | Returned as "rc". MPI_SUCCESS if successful
Fortran Binding

Format: CALL MP?_XXXXX(parameter, ceey %err)

call mpi_xxxxx(parameter,..., ierr)
Example: CALL MPI_BSEND (buf,count, type,dest,tag,comm,ierr)
Error code: | Returned as "ierr" parameter. MPI_SUCCESS if successful

CMSE 822 - Parallel Computing

http://cmse.msu.edu/cmse822 11

© S.M. Couch

Getting Started

B Communicators and Groups:

¢ MPI uses objects called communicators and groups to define which collection of processes may communicate with each other.

e Most MPI routines require you to specify a communicator as an argument.

e Communicators and groups will be covered in more detail later. For now, simply use MPI_COMM_WORLD whenever a communicator is required - it is
the predefined communicator that includes all of your MPI processes.

MPI_COMM_WORLD

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 12 © S.M. Couch

Getting Started

B Rank:

e Within a communicator, every process has its own unique, integer identifier assigned by the system when the process initializes. A rank is sometimes
also called a "task ID". Ranks are contiguous and begin at zero.

¢ Used by the programmer to specify the source and destination of messages. Often used conditionally by the application to control program execution
(if rank=0 do this / if rank=1 do that).

B Error Handling:
e Most MPI routines include a return/error code parameter, as described in the "Format of MPI Calls" section above.

e However, according to the MPI standard, the default behavior of an MPI call is to abort if there is an error. This means you will probably not be able to
capture a return/error code other than MPI_SUCCESS (zero).

e The standard does provide a means to override this default error handler. A discussion on how to do this is available HERE. You can also consult the
error handling section of the relevant MPI Standard documentation located at http://www.mpi-forum.org/docs/.

e The types of errors displayed to the user are implementation dependent.

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 13 © S.M. Couch

Environment Management Routines

MPI_Init

Initializes the MPI execution environment. This function must be called in every MPI program, must be called before any other MPI functions and must
be called only once in an MPI program. For C programs, MPI_Init may be used to pass the command line arguments to all processes, although this is

not required by the standard and is implementation dependent.

MPI_Init (&argc,&argv)
MPI_INIT (ierr)

CMSE 822 - Parallel Computing

http://cmse.msu.edu/cmse822

© S.M. Couch

Environment Management Routines

MPI Comm size

Returns the total number of MPI processes in the specified communicator, such as MPI_COMM_WORLD. If the communicator
is MPI_COMM_WORLD, then it represents the number of MPI tasks available to your application.

MPI_Comm_size (comm,&size)
MPI_COMM_SIZE (comm,size,ierr)

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 15 © S.M. Couch

Environment Management Routines

MPI Comm rank

Returns the rank of the calling MPI process within the specified communicator. Initially, each process will be assigned a unique
integer rank between 0 and number of tasks - 1 within the communicator MPI_COMM_WORLD. This rank is often referred to
as a task ID. If a process becomes associated with other communicators, it will have a unique rank within each of these as well.

MPI_Comm_rank (comm,&rank)
MPI_COMM_RANK (comm,rank,ierr)

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 16 © S.M. Couch

Environment Management Routines

MPI_Abort

MPI_Abort (comm,errorcode)
MPI_ABORT (comm,errorcode,ierr)

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822

Terminates all MPI processes associated with the communicator. In most MPI implementations it terminates ALL processes
regardless of the communicator specified.

© S.M. Couch

qlg

WI,'

Environment Management Routines

MPI Initialized

Indicates whether MPI_Init has been called - returns flag as either logical true (1) or false(0). MPI requires that MPI_Init be
called once and only once by each process. This may pose a problem for modules that want to use MPI and are prepared to
call MPIL_Init if necessary. MPI_Initialized solves this problem.

MPI Initialized (&flag)
MPI_INITIALIZED (flag,ierr)

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 18 © S.M. Couch

Environment Management Routines

MPI Wtime

Returns an elapsed wall clock time in seconds (double precision) on the calling processor.

MPI_Wtime ()
MPI_WTIME ()

MPI_Wtick

Returns the resolution in seconds (double precision) of MPI_Wtime.

MPI_Wtick ()
MPI_WTICK ()

CMSE 822 - Parallel Computing

http://cmse.msu.edu/cmse822

© S.M. Couch

Environment Management Routines

MPI Finalize

Terminates the MPI execution environment. This function should be the last MPI routine called in every MPI program - no other
MPI routines may be called after it.

MPI_Finalize ()
MPI_FINALIZE (ierr)

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 20 © S.M. Couch

C Language - Environment Management Routines

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[]) {
int numtasks, rank, len, rc;
char hostname[MPI_MAX_ PROCESSOR_NAME] ;

MPI_ Init(&argc,&argv);

MPI_ Comm_size(MPI_COMM_WORLD, &numtasks);

MPI_Comm_rank (MPI_COMM_WORLD, &rank) ;

MPI_Get_processor_ name(hostname, &len);
printf ("Number of tasks= %d My rank= %d Running on %s\n", numtasks,rank,hostname);

MPI_Finalize();

}

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 21 © S.M. Couch

