
Lecture 7: Network Topologies
CMSE 822: Parallel Computing
Prof. Sean M. Couch

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Bisection width (or bandwidth)

• Smallest number of links between two equal partitions of a network

2

Linear array Ring Tree Mesh Hypercube

w=1 w=2 w=1 w= n w=n/2

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Diameter of network

• The longest shortest distance between two nodes

3

2. Parallel Computing

efficiency of computing, but also costly from an engineering point of view. We assume that all processors
have the same degree.

Secondly, a message traveling from one processor to another, through one or more intermediate nodes, will
most likely incur some delay at each stage of the path between the nodes. For this reason, the diameter
of the graph is important. The diameter is defined as the maximum shortest distance, counting numbers of
links, between any two nodes:

d(G) = max
i,j

|shortest path between i and j|.

If d is the diameter, and if sending a message over one wire takes unit time, this means a message will
always arrive in at most time d.
Exercise 2.28. Find a relation between the number of processors, their degree, and the diameter

of the connectivity graph.
In addition to the question ‘how long will a message from processor A to processor B take’, we often worry
about conflicts between two simultaneous messages: is there a possibility that two messages, under way at
the same time, will need to use the same network link? In figure 2.16 we illustrate what happens if every
processor pi with i < n/2 send a message to pi+n/2: there will be n/2 messages trying to get through the
wire between pn/2�1 and pn/2. This sort of conflict is called congestion or contention . Clearly, the more

Figure 2.16: Contention for a network link due to simultaneous messages

links a parallel computer has, the smaller the chance of congestion.

A precise way to describe the likelihood of congestion, is to look at the bisection width . This is defined as
the minimum number of links that have to be removed to partition the processor graph into two unconnected
graphs. For instance, consider processors connected as a linear array, that is, processor Pi is connected to
Pi�1 and Pi+1. In this case the bisection width is 1.

The bisection width w describes how many messages can, guaranteed, be under way simultaneously in a
parallel computer. Proof: take w sending and w receiving processors. The w paths thus defined are disjoint:
if they were not, we could separate the processors into two groups by removing only w � 1 links.

132 Introduction to High Performance Scientific Computing

Linear array

d = n − 1

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Group exercise

• What is the diameter of a 3D cube of
processors? What is the bisection width? How does
that change if you add wraparound torus
connections?

n × n × n

4

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Group exercise

• What is the diameter of a 3D cube of
processors? What is the bisection width? How does
that change if you add wraparound torus
connections?

• A cube has processors per side, so the corners
are apart. The bisection is (or).

Adding torus connections, the diameter is and

the bisection width is .

n × n × n

3 P
3 3 P n × n P2/3

3
2

3 P
(3 P + 1)2

5

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

3D torus

6

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Group exercise

• Your parallel computer has its processors organized in a 2D grid. The chip
manufacturer comes out with a new chip with same clock speed that is dual
core instead of single core, and that will fit in the existing sockets. Critique the
following argument: ‘the amount of work per second that can be done (that
does not involve communication) doubles; since the network stays the same,
the bisection bandwidth also stays the same, so I can reasonably expect my
new machine to become twice as fast.’

7

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Group exercise

• Your parallel computer has its processors organized in a 2D grid. The chip
manufacturer comes out with a new chip with same clock speed that is dual
core instead of single core, and that will fit in the existing sockets. Critique the
following argument: ‘the amount of work per second that can be done (that
does not involve communication) doubles; since the network stays the same,
the bisection bandwidth also stays the same, so I can reasonably expect my
new machine to become twice as fast.’

• The existing bandwdith through each wire will now be shared by two cores,
so the per core bandwdith is in fact halved. What’s more, your new
configuration has a different graph, so you need to recompute the bisection
bandwidth.

8

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Group exercise

• Consider the parallel summing
example and give the execution time
of a parallel implementation on a
hypercube. Show that the theoretical
speedup from the example is attained
(up to a factor) for the implementation
on a hypercube.  

9

2.1. Introduction

Figure 2.1: Parallelization of a vector addition

execution time is linearly reduced with the number of processors. If each operation takes a unit time, the
original algorithm takes time n, and the parallel execution on p processors n/p. The parallel algorithm is
faster by a factor of p1.

Next, let us consider summing the elements of a vector. (An operation that has a vector as input but only
a scalar as output is often called a reduction .) We again assume that each processor contains just a single
array element. The sequential code:

s = 0;
for (i=0; i<n; i++)

s += x[i]

is no longer obviously parallel, but if we recode the loop as
for (s=2; s<2*n; s*=2)

for (i=0; i<n-s/2; i+=s)
x[i] += x[i+s/2]

there is a way to parallelize it: every iteration of the outer loop is now a loop that can be done by n/s
processors in parallel. Since the outer loop will go through log2 n iterations, we see that the new algorithm
has a reduced runtime of n/p · log2 n. The parallel algorithm is now faster by a factor of p/ log2 n. This is
depicted in figure 2.2.

Even from these two simple examples we can see some of the characteristics of parallel computing:
• Sometimes algorithms need to be rewritten slightly to make them parallel.
• A parallel algorithm may not show perfect speedup.

There are other things to remark on. In the first case, if each processors has its xi, yi in a local store the algo-
rithm can be executed without further complications. In the second case, processors need to communicate
data among each other and we haven’t assigned a cost to that yet.

1. We ignore lower order errors in this result when p does not divide perfectly in n. We will also, in general, ignore matters of
loop overhead.

Victor Eijkhout 73

2. Parallel Computing

Figure 2.2: Parallelization of a vector reduction

First let us look systematically at communication. We can take the parallel algorithm in the right half of
figure 2.2 and turn it into a tree graph (see Appendix 16) by defining the inputs as leave nodes, all partial
sums as interior nodes, and the root as the total sum. There is an edge from one node to another if the first
is input to the (partial) sum in the other. This is illustrated in figure 2.3. In this figure nodes are horizontally
aligned with other computations that can be performed simultaneously; each level is sometimes called a
superstep in the computation. Nodes are vertically aligned if they are computed on the same processors, and
an arrow corresponds to a communication if it goes from one processor to another. The vertical alignment

Figure 2.3: Communication structure of a parallel vector reduction

in figure 2.3 is not the only one possible. If nodes are shuffled within a superstep or horizontal level, a
different communication pattern arises.
Exercise 2.1. Consider placing the nodes within a superstep on random processors. Show that,

if no two nodes wind up on the same processor, at most twice the number of communi-
cations is performed from the case in figure 2.3.

Solution to exercise 2.1. Every partial sum has two inputs; in the figure only one was commu-
nicated, with random placement at most two can be communicated.

74 Introduction to High Performance Scientific Computing

2. Parallel Computing

Figure 2.2: Parallelization of a vector reduction

First let us look systematically at communication. We can take the parallel algorithm in the right half of
figure 2.2 and turn it into a tree graph (see Appendix 16) by defining the inputs as leave nodes, all partial
sums as interior nodes, and the root as the total sum. There is an edge from one node to another if the first
is input to the (partial) sum in the other. This is illustrated in figure 2.3. In this figure nodes are horizontally
aligned with other computations that can be performed simultaneously; each level is sometimes called a
superstep in the computation. Nodes are vertically aligned if they are computed on the same processors, and
an arrow corresponds to a communication if it goes from one processor to another. The vertical alignment

Figure 2.3: Communication structure of a parallel vector reduction

in figure 2.3 is not the only one possible. If nodes are shuffled within a superstep or horizontal level, a
different communication pattern arises.
Exercise 2.1. Consider placing the nodes within a superstep on random processors. Show that,

if no two nodes wind up on the same processor, at most twice the number of communi-
cations is performed from the case in figure 2.3.

Solution to exercise 2.1. Every partial sum has two inputs; in the figure only one was commu-
nicated, with random placement at most two can be communicated.

74 Introduction to High Performance Scientific Computing

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Dragonfly interconnect

• Messages travel at most one
long, global hop

• Reduced cost

• Risk of contention, but smart
adaptive routing algorithms
give nearly ideal performance

10

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch11

CMSE 822 - Parallel Computing http://cmse.msu.edu/cmse822 © S.M. Couch

Exercise 2.30

12

2. Parallel Computing

2.7.3 Linear arrays and rings

A simple way to hook up multiple processors is to connect them in a linear array: every processor has
a number i, and processor Pi is connected to Pi�1 and Pi+1. The first and last processor are possible
exceptions: if they are connected to each other, we call the architecture a ring network .

This solution requires each processor to have two network connections, so the design is fairly simple.
Exercise 2.29. What is the bisection width of a linear array? Of a ring?
Exercise 2.30. With the limited connections of a linear array, you may have to be clever about

how to program parallel algorithms. For instance, consider a ‘broadcast’ operation:
processor 0 has a data item that needs to be sent to every other processor.
We make the following simplifying assumptions:

• a processor can send any number of messages simultaneously,
• but a wire can can carry only one message at a time; however,
• communication between any two processors takes unit time, regardless of the

number of processors in between them.
In a fully connected network or a star network you can simply write
for i = 1 . . . N � 1:

send the message to processor i
With the assumption that a processor can send multiple messages, this means that the
operation is done in one step.
Now consider a linear array. Show that, even with this unlimited capacity for sending,
the above algorithm runs into trouble because of congestion.
Find a better way to organize the send operations. Hint: pretend that your processors
are connected as a binary tree. Assume that there are N = 2n � 1 processors. Show
that the broadcast can be done in logN stages, and that processors only need to be able
to send a single message simultaneously.

Solution to exercise 2.30. If processor zero can send all of its messages simultaneously, there
will be congestion because they all have to go through the wire to processor 1, all but
one of them have to go through the wire between processors 1 and 2, et cetera.
A better solution. Let N = 2n � 1, and choose r = (N + 1)/2 as the root. The
left and right subtrees have N 0 = (N � 1)/2 elements. The root processor sends to
r ± (N 0 + 1)/2 which are the middle processors of the subtrees, et cetera.

This exercise is an example of embedding a ‘logical’ communication pattern in a physical one.

2.7.4 2D and 3D arrays

A popular design for parallel computers is to organize the processors in a two-dimensional or three-
dimensional Cartesian mesh . This means that every processor has a coordinate (i, j) or (i, j, k), and it
is connected to its neighbours in all coordinate directions. The processor design is still fairly simple: the
number of network connections (the degree of the connectivity graph) is twice the number of space dimen-
sions (2 or 3) of the network.

It is a fairly natural idea to have 2D or 3D networks, since the world around us is three-dimensional, and
computers are often used to model real-life phenomena. If we accept for now that the physical model

138 Introduction to High Performance Scientific Computing

Linear array

Ring

