Lecture 7: Network Topologies CMSE 822: Parallel Co Prof. Sean M. Couch

Bisection width (or bandwidth)

- Smallest number of links between two equal partitions of a network

Diameter of network

- The longest shortest distance between two nodes

Linear array

$d=n-1$

Group exercise

- What is the diameter of a 3D cube of $n \times n \times n$ processors? What is the bisection width? How does that change if you add wraparound torus connections?

Group exercise

- What is the diameter of a 3D cube of $n \times n \times n$ processors? What is the bisection width? How does that change if you add wraparound torus connections?
- A cube has $\sqrt[3]{P}$ processors per side, so the corners are $3 \sqrt[3]{P}$ apart. The bisection is $n \times n$ (or $P^{2 / 3}$). Adding torus connections, the diameter is $\frac{3}{2} \sqrt[3]{P}$ and the bisection width is $(\sqrt[3]{P}+1)^{2}$.

3D torus

Table 4.2. Topological Parameters of Selected Interconnection Networks

Network name(s)	No. of nodes	Network diameter	Bisection width	Node degree	Local links?
1D mesh (linear array)	k	$k-1$	1	2	Yes
1D tours (ring, loop)	k	$k / 2$	2	2	Yes
2D mesh	k^{2}	$2 k-2$	k	4	Yes
2D torus (k-ary 2-cube)	k^{2}	k	$2 k$	4	Yes 1
3D mesh	k^{3}	$3 k-3$	k^{2}	6	Yes
3D torus (k-ary 3-cube)	k^{3}	$3 k / 2$	$2 k^{2}$	6	Yes ${ }^{1}$
Pyramid	$\left(4 k^{2}-1\right) / 3$	$2 \log _{2} k$	$2 k$	9	No
Binary tree	$2^{l}-1$	$2 l-2$	1	3	No
4-ary hypertree	$2^{l}\left(2^{l+1}-1\right)$	$2 l$	2^{l+1}	6	No
Butterfly	$2^{l}(l+1)$	$2 l$	2^{l}	4	No
Hypercube	2^{l}	l	2^{l-1}	l	No
Cube-connected cycles	$2^{l} l$	$2 l$	2^{l-1}	3	No
Shuffle-exchange	2^{l}	$2 l-1$	$\geq 2^{l-1} / 1$	4 unidir.	No
De Bruijn	2^{l}	l	$2^{l} / l$	4 unidir.	No

${ }^{1}$ With folded layout.

Group exercise

- Your parallel computer has its processors organized in a 2D grid. The chip manufacturer comes out with a new chip with same clock speed that is dual core instead of single core, and that will fit in the existing sockets. Critique the following argument: 'the amount of work per second that can be done (that does not involve communication) doubles; since the network stays the same, the bisection bandwidth also stays the same, so I can reasonably expect my new machine to become twice as fast.'

Group exercise

- Your parallel computer has its processors organized in a 2D grid. The chip manufacturer comes out with a new chip with same clock speed that is dual core instead of single core, and that will fit in the existing sockets. Critique the following argument: 'the amount of work per second that can be done (that does not involve communication) doubles; since the network stays the same, the bisection bandwidth also stays the same, so I can reasonably expect my new machine to become twice as fast.'
- The existing bandwdith through each wire will now be shared by two cores, so the per core bandwdith is in fact halved. What's more, your new configuration has a different graph, so you need to recompute the bisection bandwidth.

Group exercise

```
for (s=2; s<2*n; s*=2)
    for (i=0; i<n-s/2; i+=s)
    x[i] += x[i+s/2]
```

- Consider the parallel summing example and give the execution time of a parallel implementation on a hypercube. Show that the theoretical speedup from the example is attained (up to a factor) for the implementation on a hypercube.

Figure 2.2: Parallelization of a vector reduction

Dragonfly interconnect

- Messages travel at most one long, global hop
- Reduced cost
- Risk of contention, but smart adaptive routing algorithms give nearly ideal performance

- global link
- local link
\square router
- node group

Exercise 2.30

Exercise 2.30. With the limited connections of a linear array, you may have to be clever about how to program parallel algorithms. For instance, consider a 'broadcast' operation:
Linear array
 processor 0 has a data item that needs to be sent to every other processor.
We make the following simplifying assumptions:

- a processor can send any number of messages simultaneously,
- but a wire can can carry only one message at a time; however,
- communication between any two processors takes unit time, regardless of the number of processors in between them.
In a fully connected network or a star network you can simply write for $i=1 \ldots N-1$:
send the message to processor i
With the assumption that a processor can send multiple messages, this means that the operation is done in one step.
Now consider a linear array. Show that, even with this unlimited capacity for sending, the above algorithm runs into trouble because of congestion.
Find a better way to organize the send operations. Hint: pretend that your processors are connected as a binary tree. Assume that there are $N=2^{n}-1$ processors. Show that the broadcast can be done in $\log N$ stages, and that processors only need to be able to send a single message simultaneously.

